
Montana State University ‐ Data Science Workshop

Data Carpentry contributors & MSU Data Science Workshops Team

August 8, 2025

2

Contents

About 5
Data Science Workshop, August 8, 9am ‐ 5pm . 5

1 Introduction to R 7
1.1 Getting Started . 7
1.2 Working in R . 8
1.3 Creating Objects . 9
1.4 Working with Objects . 10
1.5 Working with Different Data Types . 11
1.6 Lists . 12
1.7 Importing Data . 14
1.8 Structure of Data . 14
1.9 Dataframes . 16
1.10 Extracting Data . 16
1.11 Changing Data Type . 19
1.12 Packages . 21
1.13 Finding Help . 22
1.14 Functions . 23
1.15 Cleaning Data . 24
1.16 Data Visualization . 25
1.17 Knitting/compiling . 29
1.18 Exiting RStudio . 30
1.19 Terminology Used in Workshop . 30
1.20 Workshop Materials & Recordings Available: . 31
1.21 How to Learn More About R and RStudio . 31

2 Data Visualization in R 33
2.1 Learning Objectives . 33
2.2 Data Viz Introduction . 33
2.3 Plotting with ggplot2 . 37
2.4 Plotting Single Variables . 48
2.5 Time‐series Data . 55
2.6 ggplot2 Themes . 63
2.7 Customization . 63
2.8 Arranging Plots . 70
2.9 Exporting Plots . 73

3 Coding with Generative AI 77

4 Data Wrangling in R 93
4.1 Learning Objectives . 93
4.2 Data Wrangling using dplyr & tidyr Intro . 93

3

4 CONTENTS

4.3 Select, Filter, and Mutate . 96
4.4 Character Wrangling . 106
4.5 Split‐Apply‐Combine Data Analysis . 108
4.6 Relational Data with dplyr . 114
4.7 Reshaping Data . 119
4.8 Exporting Data . 125

Appendix 129
4.9 Terminology Used in Workshop . 129
4.10 Workshop Materials & Recordings Available: . 130
4.11 How to Learn More About R and RStudio . 130

About

Data Science Workshop, August 8, 9am ‐ 5pm

Join us for an all‐day workshop where you’ll learn to use the R programming language for data science applications.
These concepts will be presented in an interactive format, integrating instruction and computational practice. Mon‐
tana University system graduate students, undergrads, staff, faculty, and community members are all welcome to
join. The full schedule is below.

Location: Montana State University, NAH 153 ‐ with an online option Date: Friday, August 8, 2025 Time: 9 a.m. ‐ 5
p.m.

Introduction to R ‐ 9‐10:50am

This session will start with the building blocks of using RStudio to create and explore the data structures available in
R. Then we’ll learn some basic tools for working with data in R. We will also discuss accessing and using R packages,
and how to use R’s built‐in help interface.

Data Visualization in R ‐ 11am‐1pm

The ability to create meaningful and attractive data visualizations is an essential skill of data‐intensive research. This
session will give you an overview of the grammar of graphics plotting concepts from the ggplot2 package. We will
explore ggplot’s three plotting components, data, aesthetics, and geometries, for many univariate and multivariate
graphics.

Lunch (provided) ‐ 1‐2pm

Coding with Generative AI ‐ 2‐3pm

In this session, we’ll explore using Generative AI to write code. We’ll also discuss writing prompts and responsible
use of Generative AI for data science applications.

Data Wrangling in R ‐ 3:10‐5:00pm

In this session, you will learn how to manipulate data in R using the Tidyverse. You will learn to select, filter, mutate,
arrange, and summarize data, build workflows that combine a series of operations, reshape data, join data, andmore.
The workshop is sponsored by the Library, Social Data Collection and Analysis Services, and Montana INBRE.

5

6 CONTENTS

Session 1

Introduction to R

1.1 Getting Started

The term R is used to refer to both the programming language aswell as the software that interprets the scriptswritten
using it. The learning curve may be steeper than with other statistical software, but with R the results of your analysis
or your plot does not rely on remembering what order you clicked on things, but instead on the written commands
you generated. In R you will work in scripts or with dynamic documents, with scripts within them (Rmd or Rnw files).
Scripts may feel strange at first, but they make the steps you used in your analysis clear for both you and for someone
who wants to give you feedback, further promoting the importance of reproducible science!

RStudio is a free computer application that allows you access to the resources of R, while providing youwith a comfort‐
able working environment. There are many ways you can interact with R, but for many reasons RStudio has become
the most popular. To function correctly, RStudio uses R behind the scenes, hence both need to be installed on your
computer. Both R and RStudio are cross‐platform, so that everyone’s versions look and operate the same regardless
of their operating system!

For this workshop, we will be making use of the RStudio that you will need to install on your computer. First you will
want to go to https://cran.r‐project.org/ to download for your specific operating system, run the R installer that you
downloaded and then go to https://posit.co/download/rstudio‐desktop/ to download and install RStudio.

For more assistance with getting set up, please check out the instructions provided by Data Carpentries at https:
//datacarpentry.org/R‐ecology‐lesson/#install‐r‐and‐rstudio. You need to have a computer that is running Linux,
Windows, or a somewhat recent macOS. Unfortunately, a Chromebook or iPad are not sufficient for installing and
running R.

However you get to it, RStudio has four default panels, where each can be viewed at the same time and has multiple
tabs available.

• the Editor for your scripts and documents (top‐left ‐ will be available once an RMD or script file is opened)

• the R Console (bottom‐left)

7

https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
https://datacarpentry.org/R-ecology-lesson/#install-r-and-rstudio
https://datacarpentry.org/R-ecology-lesson/#install-r-and-rstudio

8 SESSION 1. INTRODUCTION TO R

• your Environment (Objects/Variables)/History (top‐right)

• and your Files/Plots/Packages/Help/Viewer (bottom‐right).

Figure 1.1: RStudio layout

You can use the Tools ‐> Global Options ‐> Appearance tab to modify the colors and font sizes in RStudio.

1.2 Working in R

The documentwe provided for you is an Rmarkdown (.Rmd) document. It allows you towork in a reproducible fashion,
with both code (placed in what are called code chunks) and descriptions of results in the same file. The grey sections
that have three single quotes then {r} will delineate a code chunk.

```{r}
1 + 1
```

You can add thesewith Insert ‐> R into a .Rmdfile. Type all of your code in these code chunks and other documentation
and interpretation of results outside of the code chunks (like we are doing here). Although there are more complex
ways to work in RStudio, you should start today with saving this .Rmd file into a folder that also contains any data and
other figures you might want to read into this document. When you do that, RStudio will know where to look to read
in the data so you do not need to know the path for its physical location on your computer.

Once we are donewith our local work, we can also use the Knit button to compile our work into HTML,Word (DOCX),
or PDF documents. We will demonstrate this at the end of the session ‐ but this will only work if all the code “runs”
and what we have provided you has some errors in it. One other feature we’ve come to expect in modern document
editors is live spell‐checknig ‐ I mean spell‐checking ‐ by underlining suspect words, which RStudio does without
flagging code and variable names. We will also discuss RStudio “Projects” that take this one step further in terms of
organizing your work built around this markdown framework. It is important to understand the various ways to do
your work in R using RStudio.

1.3. CREATING OBJECTS 9

RStudio allows for you to execute commands directly from the code chunk in the document by using the Ctrl + Enter
(on Macs, Cmd + Return) shortcut. If you place your cursor on the line in the code chunk that you would like to
run and hit this shortcut, R will execute that line(s) of code for you. Alternatively, you can also execute code in the
console (where the output of the commands pops up). The difference between running code in the console and in
the document is that any code you execute in the console will be lost once you close your R session. If you type code
into the document’s code chunks, it will be saved when you close your R session. Because we want to be able to go
back and re‐run our code at the end of the session, it is better to type the commandwewant R to run in the document
and save it!

If R is ready to accept commands, the R console (in the bottom‐left)will showa > prompt. When R receives a command
(by typing, copy‐pasting, or using the shortcut), it will execute it, and when finished will display the results and show
the > symbol once again. If R is still waiting for you to provide it with additional instructions, a + will appear in the
console. This should tell you that you didn’t finish your command. You could have forgotten to close your parenthesis
or a quotation. If this happens and you are unsure of what went wrong, click inside the console and hit the Esc key.
Then you can start over and figure out where you went wrong!

1.2.1 Calculator

Practice: Enter each of the following commands and confirm that the response is the correct answer. Try to do this
in the console and by executing the code in the code chunk, both line by line and all at once.

1 + 2

[1] 3

16 * 9

[1] 144

sqrt(2)

[1] 1.414214

1.3 Creating Objects

These operations, however, are not very interesting. To do more useful things in R, we need to assign values to an
object. To create an object, we tell R the object’s name, followed by an assignment arrow (<-), and finally the value
of the object. This would look something like this:

x <- 6

Once we execute/run this line of code, we notice that a new object appears in our environment window. This window
shows all of the objects that you have created during your R session. The value of x appears next to it, since it is a
scalar (single number as opposed to a set of numbers or a set of a set of numbers).

Remarks:

• In the above code <- is the assignment operator. It assigns values on the right to objects on the left. So, after
executing year <- 6, the value of year is 6. The arrow can be read as 6 goes into year. For historical reasons,

10 SESSION 1. INTRODUCTION TO R

you can also use = for assignments, but not in every context. Because of the slight differences in syntax, it is
best practice to always use <- for assignments.

– In RStudio, typing Alt at the same time as the - key will write <- in a single keystroke. Neat! (Option +
- on MacOS)

• There are a few simple rules that apply when creating the same of a new object (like we did above):

– R is case sensitive, so if you name your variable cat but then try to run the code Cat + 2, you will get
an error saying that Cat does not exist

– You also want your object’s name to be explanatory, but not too long. Think current_temperature
verses current_temp. Do you really want to type out temperature every time?

– Finally, you cannot begin any object’s name with a number. You can end a name with a number
(e.g. clean_data2), but does that give you much information about what is in the contents of
clean_data2 relative to clean_data?

– The name cannot contain any punctuation symbols, except for . and _ (. is not recommended)

– You should not name your object the same as any common functions you may use (mean, sd, etc.)

• Using a consistent coding style makes your code clearer to read for your future self and your collaborators.

1.4 Working with Objects

When you assign a value to an object (like we did previously) R does not output anything by default. Writing the name
of the object will output the value of the object you created.

x <- 6

x

[1] 6

Once the object has been created, you can use it! Run the following lines of code:

2.2 * x

[1] 13.2

4 + x

[1] 10

We can also overwrite an object’s value, so that it has a new value. In the code below create a new object y and then
we give x a new value of 2.

y <- x + 6

x <- 2

1.5. WORKING WITH DIFFERENT DATA TYPES 11

1.4.1 Exercise 1:

What is the current value of y? 12 or 8?

1. Create a code chunk (Hint, use Ctrl + Alt + I on Windows, or Cmd + Option + I on Mac, to insert a blank R code
chunk), and

2. Write the code to display the value of the object.

Insert your code chunk here.

1.5 Working with Different Data Types

A vector is the basic data type in R. A vector is a series of values, which can be either numbers or characters, but
every entry of the vector must be the same data type. R can tell that you are building a vector when you use the c()
function, which concatenates a series of entries together.

temps <- c(50, 55, 60, 65)
temps

[1] 50 55 60 65

To make a vector of characters, you are required to use quotation marks (" ") to indicate to R that the value you are
using is not an object you already created in R.

animals <- c("cat", "dog", "bird", "fish")
animals

[1] "cat" "dog" "bird" "fish"

Important features of a vector is the type of data they store. Run the following lines of code and decide what type of
data the vectors contain.

class(temps)

[1] "numeric"

class(animals)

[1] "character"

1.5.1 Exercise 2:

1. Create a vector, named dec, that contains three decimal valued numbers.

2. Check: What data type does that vector contain?

Exercise 2 code here!

Another possible data type is a logical (Boolean) value. This type of data
takes on values of TRUE and FALSE. But, we said that vectors could only be numbers or characters. If TRUE and FALSE
don’t have quotations around them, then they aren’t characters. So, then they must be numbers. What numbers do
you think they are?

12 SESSION 1. INTRODUCTION TO R

logic <- c(TRUE, FALSE, FALSE, TRUE)

class(logic)

[1] "logical"

1.5.2 Exercise 3:

What happens when we try to mix different data types into one vector? Speculate what will happen when we run
each of the following lines of code:

num_char <- c(1, 2, 3, "a")

num_logic <- c(1, 2, 3, FALSE)

char_logic <- c("a", "b", "c", TRUE)

guess <- c(1, 2, 3, "4")

In each of these vectors, the two types of data were coerced into a single data type. This happens in a hierarchy,
where some data types get preference over others. Can we draw a diagram of the hierarchy?

1.6 Lists

While the elements of vectors have to be of the same data type, a list is a special vector in R that allows for you to
store a variety of types of objects. If you have a vector, a matrix, and/or a character, you can store all of them into
one list object!

The arguments to the list function are the components of the list, where the components can be characters, vectors,
matrices, or other data structures. Here, we create a list whose components are the three vectors we’ve beenworking
with:

my_first_list <- list(animals, temps, logic)
my_first_list

[[1]]
[1] "cat" "dog" "bird" "fish"
##
[[2]]
[1] 50 55 60 65
##
[[3]]
[1] TRUE FALSE FALSE TRUE

my_first_list[[1]]

[1] "cat" "dog" "bird" "fish"

1.6. LISTS 13

We notice that when printing a list, the output looks a bit different. There are a whole bunch of brackets! Let’s break
them down. I like to think of a list as a shelf with cubby holes. The cubby holes are the components of the list, but
there are elements in each cubby.

• To get to a specific component (cubby) of a list, you use the double brackets next to the name of the list (e.g
my_first_list[[1]]).

• To access the elements inside each cubby, you then use single square brackets (e.g. my_first_list[[1]][2]).

Figure 1.2: Example of lists

1.6.1 Named Lists

my_named_list <- list(title = "statistics", numbers = 1:10, data = TRUE)
my_named_list

$title
[1] "statistics"
##
$numbers
[1] 1 2 3 4 5 6 7 8 9 10
##
$data
[1] TRUE

We see the output for a named list is slightly different. Instead of double brackets next to each component, there are
now $ and names of the items in the list, these can be variables, parameters, or other information. This will help you
understand the structure of data.frames (coming up next)!

14 SESSION 1. INTRODUCTION TO R

1.7 Importing Data

• Use the Import Dataset button in the Environment tab

• Choose the From Text (base) option

• Click on the Browse button

• Direct the computer to where you saved the BlackfootFish.csv data file, click open

• It will bring up a preview of the data

• Make sure that the box labeled “Strings as factors” is not checked

• Click on the Import button

Notice the code that outputs in the console (the bottom left square). This is the code that you could have typed in
the code chunk below to import the data yourself. Copy and paste the code that was output in the code chunk below.

copy and paste the code that was used by R to import the data be careful to
only copy the code that is next to the > signs!

The path provided can also be simplified to just include the file name ‐ if the .Rmd and data are saved in the same
folder. If you have any trouble reading in the data set, here is code that allows you to read the data from our github
repository:

BlackfootFish <- read.csv("data/BlackfootFish.csv")

1.8 Structure of Data

The data we will use is organized into data tables. When you imported the BlackfootFish data into RStudio it was
saved as an object. You are able to inspect the structure of the BlackfootFish object using functions built in to R
(no packages necessary).

Run the following code. What is output from each of the following commands?

class(BlackfootFish) ## What is the object class of the data?

[1] "data.frame"

dim(BlackfootFish) ## What is the first number represent? What about the second number?

[1] 18352 7

names(BlackfootFish) ## What does this output refer to?

[1] "trip" "mark" "length" "weight" "year" "section" "species"

1.8. STRUCTURE OF DATA 15

str(BlackfootFish) ## What is the structure of the data?

'data.frame': 18352 obs. of 7 variables:
$ trip : int 1 1 1 1 1 1 1 1 1 1 ...
$ mark : int 0 0 0 0 0 0 0 0 0 0 ...
$ length : num 288 288 285 322 312 363 269 160 213 157 ...
$ weight : num 175 190 245 275 300 380 170 40 80 35 ...
$ year : int 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 ...
$ section: chr "Johnsrud" "Johnsrud" "Johnsrud" "Johnsrud" ...
$ species: chr "RBT" "RBT" "RBT" "RBT" ...

summary(BlackfootFish) ## What is the data type of each variable in our dataset?

trip mark length weight
Min. :1.000 Min. :0.00000 Min. : 16.0 Min. : 0.0
1st Qu.:1.000 1st Qu.:0.00000 1st Qu.:186.0 1st Qu.: 65.0
Median :2.000 Median :0.00000 Median :250.0 Median : 150.0
Mean :1.501 Mean :0.09285 Mean :262.3 Mean : 246.2
3rd Qu.:2.000 3rd Qu.:0.00000 3rd Qu.:330.0 3rd Qu.: 330.0
Max. :2.000 Max. :1.00000 Max. :986.0 Max. :4677.0
NA's :1796
year section species
Min. :1989 Length:18352 Length:18352
1st Qu.:1991 Class :character Class :character
Median :1996 Mode :character Mode :character
Mean :1997
3rd Qu.:2002
Max. :2006
##

typeof(BlackfootFish) ## What is the storage mode of a data.frame?

[1] "list"

When we inspect dataframes, or other objects in R, there are some general functions that are useful to check the
content/structure of the data. Here are some:

• size:
– dim(datasetname): rows and columns

– nrow(datasetname): number of rows

– ncol(datasetname): number of columns

– length(datasetname$variable): length of a vector
• content:

16 SESSION 1. INTRODUCTION TO R

– head(datasetname): first 6 rows

– tail(datasetname): last 6 rows

– View(datasetname): opens viewer window in separate tab
• names:

– colnames(datasetname): column names of dataframe

– rownames(datasetname): row names of dataframe
• summary of content:

– str(datasetname): structure of object and information about the columns

– glimpse(datasetname): similar information to str, but neater output (requires tibble package)

– summary(datasetname): summary statistics for each column

Note: Many of these are generic functions that will work on other data types, not just on data.frames.

1.9 Dataframes

What is a dataframe? A dataframe is a type of R object and is the de facto structure of tabular data. You can create
dataframes by hand, but most of us do not use R to input our data by hand. Instead, we import our data using R com‐
mands that read in spreadsheets (read.csv, read_csv (requires readr package), read_excel (requires readxl
package), etc.). A dataframe is a set of columns, where each column is a vector. Thus, columns have the same data
type within the column, but potentially different data types across columns.

For example, the columns trip, mark, and year are integers (whole numbers), weight and length are numeric
(numbers with decimals), and section and species are characters.

1.10 Extracting Data

If wewere interested in accessing a specific variable in our dataset, we canuse the$ command. This commandextracts
the specified variable (on the right of the $ sign) from the dataset. When this is extracted, R views the variable as a
vector of entries, which is what the [1:18352] refers to.

years <- BlackfootFish$year
extracts year from the dataset and saves it into a new variable named years

str(years) ## using the new variable (remember case matters!)

int [1:18352] 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 ...

How would you determine how long the vector is?

Another method for accessing data in the dataset is using matrix notation ([row, column]). If you look to your right
in the Environment window, you notice that RStudio tells you the dimensions of the BlackfootFish data. You can

1.10. EXTRACTING DATA 17

(roughly) view the dataset as a matrix of entries, with variable names for each of the columns. I could instead use
bracket notation to perform the same task as above, using the following code.

years <- BlackfootFish[, 5]
This takes ALL rows of data but only the fifth column Same as years <-
BlackfootFish[1:18352, 5]

BlackfootFish[1, 5]

[1] 1989

str(years)

int [1:18352] 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 ...

1.10.1 Practice: Working with dataframes

The following is a preview of the dataframe df:

df <- data.frame(x = c("H", "N", "T", "W", "V"), y = c("May", "Oct", "Mar", "Aug",
"Feb"), z = c(2010, 2015, 2018, 2017, 2019))

df

x y z
1 H May 2010
2 N Oct 2015
3 T Mar 2018
4 W Aug 2017
5 V Feb 2019

1.10.1.1 Exercise 4:

What would be output if you entered: df[3,]?

1.10.1.2 Exercise 5:

What would you input to get an output of 2015? Can you think of two ways to do it?

1.10.2 Accessing Data

When we have a data frame or a list of objects, we can extract specific items by specifying their position in the data
frame or list. We saw how to do this with a single item, row, or column that we want to extract (BlackfootFish[1,
5], df[3,] or BlackfootFish[, 5]). We can specify two items, rows, or columns by either using the fact that the
two things we want are adjacent, or we can combine what we want into a list that we can then use for extracting. We
will continue to use the indices to specify what we want to extract.

For example, c(1, 2) could identify the first two objects in a list. However they are adjacent so we could use a:b to
indicate that we want everything from position a to position b in the list. So, c(1,2) would give the same items as

18 SESSION 1. INTRODUCTION TO R

c(1:2).

1.10.2.1 Quick Check

Run the following code to see what you get. Play around with the first and last numbers to see what happens.

c(1, 2, 3, 4, 5)

[1] 1 2 3 4 5

c(1:5)

[1] 1 2 3 4 5

c(5:1)

[1] 5 4 3 2 1

c(123:131)

[1] 123 124 125 126 127 128 129 130 131

c(3:-1)

[1] 3 2 1 0 -1

When you want adjacent items, using the a:b notation is nicer than having to type out all of the values.

What about non‐adjacent items?

For non‐adjacent items, you just need to fall back on listing everything out. Say you want the first, third, and 9th item
in a list. Then you can use c(1, 3, 9).

Now that we’ve talked about how to create lists of the indices we want, how do we use these lists to extract items?

Using our data frame that we created above, to extract rows 2 and 3 we can use the notation c(2, 3) (or c(2:3)
since they are adjacent).

df[c(2, 3),]

x y z
2 N Oct 2015
3 T Mar 2018

If we want to extract rows 2 and 4, we can use this list of indices: c(2, 4)

df[c(2, 4),]

x y z
2 N Oct 2015
4 W Aug 2017

NOTE: Instead of using indices you can also do the same technique with names if the rows or columns are named.

1.11. CHANGING DATA TYPE 19

1.10.2.2 Exercise 6:

1. How would you pull off only columns x and y?
2. What about pulling off only columns x and z?

1.10.2.3 Exercise 7:

How would you modify the script below, to get an output of [1] 22 24?

s <- c(22, 24, 49, 18, 1, 6)
s[]

1.10.2.4 Exercise 8:

See what would happen if you entered s[3,]. How can you explain that result?

1.11 Changing Data Type

By default, when building or importing a data frame, the columns that contain characters (i.e., text) are coerced (=
converted) into factors. Depending on what you want to do with the data, you may want to keep these columns
as character type. To do so, read.csv() and read.table() have an argument called stringsAsFactors which can be
set to FALSE. This is what happened when we made sure that the box "stringsAsFactors" was unchecked when
importing our data.

In most cases, it is preferable to set stringsAsFactors = FALSE when importing data and to convert as a factor
only the columns that require this data type. But what is a factor?

Consider the variables species and section. These variables represent a broader class of what we call categorical
variables. In R there are two ways to store this information, (1) as a series of character strings, or (2) as a factor.
In the early days of coding in R, factors were more efficient than characters, since you only need to store the level of
the factor each observation went with.

Some functions in R require character vectors to be converted to factor variables to correctly handle the information.
We recommend that you convert character vectors to factors intentionally (not automatically) only when necessary
and always review and possibly modify the levels of the factor variable to make the levels as explicit as possible.

In these data, species has four levels (RBT, WCT, Bull, and Brown). The levels are the unique values that variable can
take on. If we want R to view this variable as a factor instead of character, we need to change its data type.

unique(BlackfootFish$species) ## tells you the unique values of species

[1] "RBT" "WCT" "Bull" "Brown"

BlackfootFish$speciesF <- factor(BlackfootFish$species)
creates a new variable that is the factor version of species

Now do the same thing for section. How many unique sections are there?

unique(BlackfootFish$section) ## tells you the unique values of section

20 SESSION 1. INTRODUCTION TO R

[1] "Johnsrud" "ScottyBrown"

BlackfootFish$sectionF <- factor(BlackfootFish$section)
creates a new variable that is the factor version of section

There is also a function that will allow for you to specify the order of the levels of a factor! As we saw before, the
factor function chooses the levels alphabetically. Suppose youwould like for the species to be in the following order:
Bull, Brown, RBT, and WCT.

Using the factor function this would look like:

BlackfootFish$speciesF <- factor(BlackfootFish$species,
levels = c("Bull", "Brown", "RBT", "WCT"))

If you want to check the order and names of the levels that are being used by a factor, the levels() function can be
useful:

levels(BlackfootFish$speciesF)

[1] "Bull" "Brown" "RBT" "WCT"

1.11.1 Practice: Working with factor variables

1.11.1.1 Exercise 9:

Year was saved as an integer data type (1989 ‐ 2006), but we may want to consider it to be a categorical variable
(specifically a factor). Write the R code to create a new variable called yearF that is a factor of year (as you did with
section and species).

BlackfootFish$yearF <- factor(BlackfootFish$year)

1.11.1.2 Exercise 10:

Now, verify that yearF is viewed as a categorical variable, with the same levels as year. (Hint: you have already used
three functions that would do this for you)

An issue with factors lies with if/when you want to change it back to a number or character. In the code below I’ve
decided that I don’t want year to be a factor and want to change it back to numeric. What happens when I use the
as.numeric() function on the yearF variable?

BlackfootFish$yearF <- factor(BlackfootFish$year)

year_recover <- as.numeric(BlackfootFish$yearF)

ds <- data.frame(original = BlackfootFish$yearF, recovered = year_recover)
head(ds)

original recovered
1 1989 1
2 1989 1
3 1989 1

1.12. PACKAGES 21

4 1989 1
5 1989 1
6 1989 1

tail(ds)

original recovered
18347 1991 3
18348 1991 3
18349 1991 3
18350 1991 3
18351 1991 3
18352 1991 3

1.12 Packages

As we mentioned previously, R has many packages, which people around the world work on to provide and maintain
new software and new capabilities for R. You will slowly accumulate a number of packages that you use often for a
variety of purposes. In order to use the elements (data, functions) of the packages, you have to first install the package
(only once on a given computer) and then load the package (every time).

We’re going to install a few packages that are often used.

• Use the Install button in the Packages tab

• Type in remotes and tidyverse into the blank line (separated by a comma)

• Check the Install dependencies box

• Click on the Install button

There will be a large amount of output coming out of the console. This output is R trying to download the package(s)
you requested. Once the computer has downloaded the packages, it will tell you that “The downloaded binary
packages are in”, followed by the location of the files.

Now that the files are downloaded, we need to load them in order to use them. The following code will load each
package, please run it!

library(remotes)
library(tidyverse)

-- Attaching core tidyverse packages ------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4

22 SESSION 1. INTRODUCTION TO R

-- Conflicts ------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Notice that when loading the tidyverse package that there is a large amount of output. This output is telling you all
of the other packages that are loaded in the tidyverse package, as well as the functions in the tidyverse package
that overwrite (mask) functions from base R.

This is the process you go through if you ever find packages that you would like to use! Often packages that you
install will need to be updated. To update a package you can click on the “Tools” tab, then click on “Check for Package
Updates”. This will bring up a window that will list all of the packages that have newer versions than what you have.
Click on the packages that you wish to update, or click on the “Select All” button.

1.13 Finding Help

One of the chief reasons for R’s religious following is its wonderful documentation. If you need a function to complete
a task (say find the variance), but are not quite sure how it’s spelled, what arguments it takes, or what package it lives
in, don’t fret! The ? and help() commands are very powerful. For functions, placing the ? before the name, will tell
R to search for that name in all of the functions, in all of the packages you have installed.

• If it finds one identical match, it will display the help file for that function in the Help tab in the bottom‐right
corner.

• If it finds more than one identical match, it will display the functions, in their respective packages, that you
have to choose from.

• If it finds no identicalmatch, it will tell you that “No documentation for ____ in specified packages
and libraries:,” and suggests you use a ?? instead.

– A ?? in front of the function name will search all of R for named functions similar to what you typed.

– Theoutputwill tell youwhat package the function is in, aswell as the function’s name (package::function).

If you would like help on a particular package, say one that you just downloaded, then you can use the same com‐
mand(s) to get help. These commands will load up a help page (in RStudio) in the Help pane. Each help page is broken
down into sections:

• Description: An extended description of what the function does.

• Usage: The arguments of the function and their default values.

• Arguments: An explanation of the object each argument is expecting.

• Details: Any important details to be aware of.

1.14. FUNCTIONS 23

• Value: The object the function returns.

• See Also: Any related functions that may be useful.

• Examples: Some examples for how to use the function.

1.14 Functions

In R there are both functions that are built in (require no package to be loaded), as well as functions that are housed
within specific packages. You have already used a fewbuilt in functions to inspect the structure of the BlackfootFish
data (str, class, summary). As we know, a function transforms an input (potentially multiple) into an output. You
have to provide Rwith the inputs (arguments) required for the function to generate an output. The argument(s) inside
a function happen after the (symbol. You know an object is a function when it is immediately followed by a (and
the corresponding closing) comes after the arguments are complete. The output of a function does not have to be
numerical and it typically is not a single number, it can be a set of things or a dataset.

Arguments describe the details of what a function is to do. Some functions take arguments that are specified by the
user, or, if left undeclared, take on default values. These arguments are typically given names (as seen in the help file),
but the arguments are assumed to follow the order the function expects if they are not named (also stated in the
help file). When naming an argument, the name of the argument is followed by an = sign and then the value of the
argument. Notice that here we are using the = to declare what value each argument is taking on, we are not creating
a new variable with that value assigned to it.

Suppose we wanted to create a vector of 10 zeros. To do this, we would use the rep function:

?rep

rep(x = 0, times = 10) ## repeating 0 ten times

[1] 0 0 0 0 0 0 0 0 0 0

rep(times = 10, 0) ## switching order of arguments

[1] 0 0 0 0 0 0 0 0 0 0

rep(0, 10) ## no named arguments

[1] 0 0 0 0 0 0 0 0 0 0

rep(10, 0) ## not what we wanted!

numeric(0)

Now let’s look over some other functions that are often used:

takes a numerical input, but there are NA's in our data
mean(BlackfootFish$weight)

review the help and add in the argument that removes the NA's

24 SESSION 1. INTRODUCTION TO R

mean(BlackfootFish$weight, argument here!)

gives an error because the input is not the correct data type
median(BlackfootFish$species)

takes multiple inputs separated by a comma
cor(BlackfootFish$length, BlackfootFish$weight)

Does cor have an option to remove NA's?

Error in parse(text = input): <text>:5:37: unexpected symbol
4: ## review the help and add in the argument that removes the NA's
5: mean(BlackfootFish$weight, argument here
^

As seen in the functions above, some functions have optional arguments. If they are not specified by the user, then
they take on their default value (FALSE for na.rm). These options control the behavior of the functions, such as
whether it includes/excludes NA values.

1.15 Cleaning Data

In many instances, you will deal with data that are not “clean”. Based on the output we received from the mean()
function, we know that there are NA’s in the BlackfootFish data, possibly across a variety of variables. Before we
used na.rm as an option to remove NA’swithin a function, but the na.omit function takes a dataframe and removes
any NA’s from that dataset. Based on the output below, how many rows in the BlackfootFish data have an NA
present?

dim(BlackfootFish) ## gives the dimensions of the dataset in (row, column) format

[1] 18352 10

dim(na.omit(BlackfootFish))

[1] 16556 10

na.omit takes dataframes, matrices, and vectors and returns object with
incomplete cases removed - incomplete cases are ones with any NA's

Remark: The computer is using an algorithm to return a dataset with no NA values anywhere in it. This algorithm goes
through every row of the dataset and (roughly) has the following steps,

• Inspect the row to see if there is an NA anywhere in that row

• If there is an NA in that row, the logical (is.na) evaluates to TRUE, and the row is deleted

• If there are not any NA’s in that row, the logical evaluates to FALSE, and the row is retained

1.16. DATA VISUALIZATION 25

• Once it has stepped through every row, the function outputs the “cleaned” dataframe

If we wish to remove all of the NA’s from the dataset, we can use the na.omit command from above. We can save
the new “clean” dataset under a new name (creating a new object) or under the same name as before (replacing the
old object with the new object).

BlackfootFish_clean <- na.omit(BlackfootFish)
Creates a new dataframe, where the NA's have all been removed

1.16 Data Visualization

There are many different genres of data graphics, with many different variations on each genre. Here are some com‐
monly encountered kinds:

• scatterplots: showing relationships between two quantitative variables

• distributions: showing distributions of a single quantitative variable

• bar charts: displaying frequencies or densities of a single categorical variable

We will include this code for reference, but will skip this section, as we will go over data visualization using ggplot2
in the next workshop session.

1.16.1 Scatterplots

The main purpose of the scatterplot is to show the relationship between two variables across several or many cases.
Most often, there is a Cartesian coordinate system in which the x‐axis represents one variable and the y‐axis the
second variable.

?plot()
plot(length ~ weight, data = BlackfootFish_clean)

0 1000 2000 3000 4000

0
60

0

weight

le
ng

th

plot(length ~ weight,
data = BlackfootFish_clean,
xlab = "Weight (gm)", ## adding in axis labels
ylab = "Length (cm)",
las = 1, ## changing orientation of y-axis labels,
main = "Plot of Length by Weight of ..." ## adds a title
)

26 SESSION 1. INTRODUCTION TO R

0 1000 2000 3000 4000

0

400

800

Plot of Length by Weight of ...

Weight (gm)

Le
ng

th
 (

cm
)

1.16.2 Distribution

A histogram shows how many observations fall into a given range of values of a variable and can be used to visualize
the distribution of a single quantitative variable.

hist(BlackfootFish_clean$length)

Histogram of BlackfootFish_clean$length

BlackfootFish_clean$length

F
re

qu
en

cy

0 200 400 600 800 1000

0
25

00

hist(BlackfootFish_clean$length, freq = F) ## converts to a density plot (area adds to 1)

Histogram of BlackfootFish_clean$length

BlackfootFish_clean$length

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
4

Does freq need to be named?
hist(BlackfootFish_clean$length, FALSE)

Error in hist.default(BlackfootFish_clean$length, FALSE): invalid number of 'breaks'

1.16. DATA VISUALIZATION 27

Why is there an error about the 'number of breaks'?

hist(BlackfootFish_clean$length,
freq = F,
xlab = "Length", ## adds x-axis label
main = "Fish Lengths in Blackfoot River" ## adds title to plot
)

Fish Lengths in Blackfoot River

Length

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
4

hist(BlackfootFish_clean$length,
freq = F,
nclass = 50, ## changes the number of bins
xlab = "Length",
main = "Fish Lengths in the Blackfoot River",
las = 1 ## changes orientation of axis labels
)

Fish Lengths in the Blackfoot River

Length

D
en

si
ty

0 200 400 600 800 1000

0.000

0.002

0.004

1.16.3 Side‐by‐Side Boxplots

The familiar boxplot is a simple display to use when the objective is to compare the distribution of a quantitative
variable across different levels of a categorical variable.

What other options are available to add to your boxplot?
boxplot(weight ~ species, data = BlackfootFish_clean)

28 SESSION 1. INTRODUCTION TO R

Brown Bull RBT WCT
0

30
00

species

w
ei

gh
t

1.16.4 Bar Charts

Bar charts are an effective way to compare the frequencies of levels of a categorical variable.

section <- table(BlackfootFish_clean$section)
tables the number of fish that were caught in each section

barplot(section,
xlab = "Section", ## adds axis labels to plot
ylab = "Number of Fish",
main = "Fish Caught by Section", ## adds title to plot
las = 1, ## changes orientation of axis labels
col = "blue", ## specifies what color the bars should be
ylim = c(0, 12000) ## specifies what range of y-values to plot
)

Johnsrud ScottyBrown

Fish Caught by Section

Section

N
um

be
r

of
 F

is
h

0
4000
8000

12000

1.16.5 Practice: Graphing

1.16.5.1 Exercise 11:

Using statistics or graphics, which year in our dataset had the most fish caught?

yearF_counts <- table(BlackfootFish_clean$yearF)
yearF_counts

##
1989 1990 1991 1993 1996 1998 2000 2002 2004 2006
1658 2079 2058 1784 854 1208 2101 1651 1392 1771

1.17. KNITTING/COMPILING 29

barplot(yearF_counts, xlab = "Year Caught", ylab = "Number of Fish", main = "Fish Caught by Year",
las = 1, col = "blue", ylim = c(0, 2200),)

1989 1991 1996 2000 2004

Fish Caught by Year

Year Caught

N
um

be
r

of
 F

is
h

0
500

1000
1500
2000

1.16.5.2 Exercise 12:

Make a boxplot of the fish weights over the different years in the dataset.

boxplot(weight ~ yearF, data = BlackfootFish_clean)

1989 1991 1996 2000 2004

0
30

00

yearF

w
ei

gh
t

1.17 Knitting/compiling

Hopefully at this point you have fixed all the code errors in the file we initially provided as you learned about the R
code and functions. A final (and sometimes intermediate step) is to compile your Rmarkdown file into an HTML,Word,
or PDF document. The compiling process will verify that the code you wrote works in the order that it is present in
the document and is your reproducible result to share with colleagues and collaborators. The .Rmd is your archive of
the code used to produce those results from the data.

The HTML format is the least nice for printing but also has the fewest dependencies on other software to compile.
Compiling to Word requires a word processing software like Microsoft Word. Compiling to PDF either requires the
tinytex package in R or a separate installation of miktex, so often requires additional steps beyond what we want
to discuss today.

To attempt to knit to one of these formats, go to “Knit” and click on the triangle to select the “Knit to ...” version.
The entire suite of code will be re‐run from beginning to end and, if it works, compiled into the document type you
specified.

30 SESSION 1. INTRODUCTION TO R

1.18 Exiting RStudio

Finally, when you are done with your work and attempt to exit out of RStudio, it will ask you to save your workspace.
DO NOT DO THIS! It will just create a cluttered workspace and could even cause you to get incorrect results. In fact,
you should go into the Tools ‐> Global Options and then make sure that “Save workspace to .RData on exit” option on
the first screen you will see is set to Never. If you save your R code either as a .R or (better) an RMarkdown (.Rmd) file,
you can re‐create any results by simply re‐running that code or re‐knitting the file. If you find that you have lots of
“stuff” in your workspace because you accidentally saved your workspace, just run rm(list = ls()). It will delete
all the data sets from your workspace.

1.19 Terminology Used in Workshop

• Command: A command is what R executes. In an R script file (script.R), commands are automatically implied,
as this type of file does not accept text, only in comments. In an Rmd (Markdown) file (report.Rmd), commands
are delineated between three ticks on the top (```{r}) and three ticks (```) on the bottom.

```{r}
# Your code goes here
```

• Comment: Helpful text added into a script environment. Comments can be used to describe functions, pro‐
cesses, a train of thought, so that when you return to your code, tomorrow or next year, you are able to under‐
stand the purpose of each line of code! Comments are preceded by at least on # within a code chunk.

• Object: A variable created in R, to be used elsewhere in the code. Objects can be a variety of things, such as
scalars (x <- 3), vectors (x <- c(1, 2, 3, 4, 5)), matrices, and dataframes, to name a few.

• Assignment Arrow: The assignment arrow <- is used to assign values on the right to the objects on the left (x
<- 1). For historical reasons, you can also use = for assignments, but not everywhere. Because of these slight
differences, it is recommended to always use assignment arrows for assignment.

• Class: Most R objects have a class attribute, a character vector giving the names of the classes from which the
object inherits. Examples of classes are numeric, factor, integer, character, dataframe, matrix, list.

• Vector: A vector is a list of entries, all sharing the same class. A vector has only one dimension, so data extraction
uses only a single entry in brackets (e.g. x[3]). You can create vectors of characters (c("a", "b", "c")),
vectors of numbers (c(1, 2, 3)), to name a few.

• Matrix: Similar to what youmay have seen in a mathematics class, a matrix is an object with rows and columns,
where every entry in the matrix must be a number.

• List: A generic vector, which contains other objects. A list can contain a variety of different classes of objects,
e.g., characters, vectors, data.frames, matrices, or outputs from a model! A data.frame is a special type of list
where the components are vectors and they all have the same length.

• Dataframe: A dataframe is a collection of variables. Dataframes share many of the properties of matrices,
where you are able to extract elements using bracket ([]) notation, and lists, where you are able to extract
columns using $. Dataframes are used as the fundamental data structure by most of R’s statistical modeling

1.20. WORKSHOP MATERIALS & RECORDINGS AVAILABLE: 31

software. Note that tibbles have been more recently created as part of the tidyverse and provide a similar but
slightly different object where you can store your data.

• Argument: Input(s) into a function, so that an output is created. Most functions take named arguments (e.g.,
data = BlackfootFish) and the order of the arguments is assumed to follow the order found in the func‐
tion’s help file. When using a named argument in a function, the name comes first, followed by an = sign, then
the input.

• Logical Value: TRUE and FALSE value(s) that can be used to turn off/on options in functions and plots, and also
to manipulate data.

1.20 Workshop Materials & Recordings Available:

• email Sara Mannheimer (sara.mannheimer@montana.edu)

• through the MSU Library Data Science website (http://www.montana.edu/datascience/)

1.21 How to Learn More About R and RStudio

This material is intended to provide you with an introduction to using R for scientific analyses of data. The best way
for you to continue to learn more about R is to use it in your research! This may sound daunting, but writing R scripts
is the best way to become familiar with the syntax. This will help you progress through more advanced operations,
such as cleaning your data, using statistical methods, or creating graphics.

The best place to start is playing aroundwith the code from today’s workshop. Change parts of the code and see what
happens! Better yet, use the code from the workshop to investigate your own data!

1.21.1 Clean Code

Yes, writing code may be completely new to you, but there is a difference between code that looks nice and code
that does not. Generally, object names should be nouns and function names should be verbs. It is also important
that your code looks presentable, so that a friend/college/professor can read it and understand what you are doing.
For these reasons, there are style guides for writing code in R. The two main style guides are Google’s https://google.
github.io/styleguide/Rguide.xml and the slightly more comprehensive Tidyverse style guide https://style.tidyverse.
org/. Installing the styler package will allow you to highlight code and format it in a more legible way. Visit the
tidyverse page https://style.tidyverse.org/ for more information.

1.21.2 Projects in RStudio

R projects provide a way to organize all the code and data in one place and many consider these the best way to work
in R. We chose to avoid this step and just use a single .Rmd file to expedite your first experience using R. A motivation
for using projects is that it is important to organize your data and script files into the same or related locations and
have different locations for different iterations of projects. If you don’t do this:

• it is really hard to tell which version of your data is original and what versions are modified

mailto:sara.mannheimer@montana.edu
http://www.montana.edu/datascience/
https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml
https://style.tidyverse.org/
https://style.tidyverse.org/
https://style.tidyverse.org/

32 SESSION 1. INTRODUCTION TO R

• things get really messy because all types of files are mixed together

• it’s probably hard for you to find things and relate the correct files to their respective output

Ultimately, good project organization will make your life easier! It helps ensure the integrity of your data, makes it
simpler to share your code or get help with your code, allows for you know exactly what code you used on a paper,
and it’s easier to pick a project back up.

It is good code writing and file storage practice to keep a set of all related data, analysis, plots, documents, etc. in
the same folder. RStudio makes this process easy with using their projects. In an RStudio project, all of the project’s
pieces are in the same folder. This allows for a clean workflow and a simple working directory for R. When you are
executing code for a document/script Rwill search for things (such as data) in the same folder as the document/script,
which is called a relative path.

Whenever you start working on a new project in RStudio, go through the following steps:

1. Click on the “File” menu button, then select “New Project”

2. Click “New Directory”

3. Click “New Project”

4. Create a name for your project (make it explanatory!)

5. Select where the project should live

6. Click the “Create Project” button

7. Open the project!

After this process R will be searching for objects (such as data) in the same folder as the project. This allows for us to
keep all of our files in a self‐contained system.

After saving your previous work today, you can try to create a project in a new folder on your computer. After you
create the project, you can create a new .Rmd file and copy and paste the text from this document into this file. And
move a copy of the BlackfootFish.csv into the project folder you created. Whenever you open this project it will take
you directly to the work you have done in that project folder. It may be useful to close the project before exiting
RStudio to avoid confusion in later sessions.

Session 2

Data Visualization in R

2.1 Learning Objectives

• Produce scatter plots, boxplots, density plots, and time series plots using ggplot2.
• Set universal and local plot settings.
• Describe what aesthetics are and how they are used by ggplot().
• Describe what faceting is and apply faceting to a ggplot().
• Modify the aesthetics of an existing ggplot() plot (e.g., axis labels, color).
• Build multivariate and customized plots from data in a data frame.
• Arrange multiple plots in a grid format.
• Export publication ready graphics using ggsave().

2.2 Data Viz Introduction

ggplot2 is a plotting package that makes it simple to create complex plots from data in a data frame. It provides a
more programmatic interface for specifying what variables to plot, how they are displayed, and general visual proper‐
ties. Therefore, we only needminimal changes if the underlying data change or if we decide to change from a bar plot
to a scatter plot. This helps in creating publication quality plots with minimal amounts of adjustments and tweaking.

Packages in R are basically sets of additional functions that let you do more stuff. The functions we’ve used in the
previous session, like str() or mean(), come built into R; packages give you access to more of them. Before you use
a package for the first time you need to install it on your machine, and then you should import it in every subsequent
R session when you need it.

Install the tidyverse package by going to Packages > Install and typing tidyverse into the dialog box.
Keep “Install dependencies” checked. You can also run install.packages("tidyverse") from the
console.

This is an “umbrella‐package” that installs several packages useful for data analysis which work together well such as
tidyr, dplyr, ggplot2, readr, forcats, etc.

33

34 SESSION 2. DATA VISUALIZATION IN R

The tidyverse package tries to address common issues that arise when doing data analysis with some of the func‐
tions that come with R.

1. The tidyverse solves complex problems by combining many simple pieces.

“Nomatter how complex and polished the individual operations are, it is often the quality of the glue that
most directly determines the power of the system.”

— Hal Abelson

2. The tidyverse is written for people to read!

“Computer efficiency is a secondary concern because the bottleneck inmost data analysis is thinking time,
not computing time.”

— Hadley Wickham

In this workshop, we have already installed the tidyverse using install.packages("tidyverse"). It is impor‐
tant to note that there’s no need to re‐install packages every time we run the script.

Then, to load the package include code in your work with:

load the tidyverse packages
library(tidyverse)

Working with packages was discussed in more detail in the “Introduction to R” workshop. We will proceed through
the remaining work with the tidyverse package installed and loaded.

To learn more about ggplot2 after the workshop, you may want to check out this ggplot2 reference website (link)
and this handy cheatsheet on ggplot2 (link).

2.2.1 Presentation of the Survey Data

The data used in this workshop are a time‐series for a small mammal community in southern Arizona. This is part
of a project studying the effects of rodents and ants on the plant community that has been running for almost 40
years, but we will focus on the years 1996 to 2002 (n=11332 observations). The rodents are sampled on a series of
24 plots, with different experimental manipulations controlling which rodents are allowed to access which plots. This
is simplified version of the full data set that has been used in over 100 publications and was provided by the Data
Carpentries (https://datacarpentry.org/ecology‐workshop/data/). We are going to focus on animal species diversity
and weights in this workshop. The dataset is stored as a comma separated value (CSV) file.

https://ggplot2.tidyverse.org/reference/
https://github.com/rstudio/cheatsheets/blob/main/data-visualization-2.1.pdf
https://datacarpentry.org/ecology-workshop/data/

2.2. DATA VIZ INTRODUCTION 35

Each row holds information for a single animal, and the columns represent (along with some others we will not use):

Column Description

record_id Unique id for the observation
month month of observation
day day of observation
year year of observation
plot_id ID of a particular plot
species_id 2‐letter code
sex sex of animal (“M”, “F”)
hindfoot_length length of the hindfoot in mm
weight weight of the animal in grams

We’ll read in our data using the read_csv() function, from the tidyverse package readr, instead of read.csv().

surveys <- read_csv("data/surveys2.csv")

Rows: 11332 Columns: 15
-- Column specification --
Delimiter: ","
chr (7): species_id, sex, day_of_week, plot_type, genus, species, taxa
dbl (7): record_id, month, day, year, plot_id, hindfoot_length, weight
date (1): date
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

You will see the message Parsed with column specification, followed by each column name and its data type.
When you execute read_csv on a data file, it looks through the first 1000 rows of each column and guesses the data
type for each column as it reads it into R. For example, in this dataset, read_csv reads weight as col_double (a
numeric data type), and species as col_character.

inspect the data
str(surveys)

spc_tbl_ [11,332 x 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ record_id : num [1:11332] 23215 23216 23217 23218 23220 ...
$ month : num [1:11332] 1 1 1 1 1 1 1 1 1 1 ...
$ day : num [1:11332] 27 27 27 27 27 27 27 27 27 27 ...
$ year : num [1:11332] 1996 1996 1996 1996 1996 ...
$ plot_id : num [1:11332] 21 1 17 17 2 18 1 2 17 2 ...
$ species_id : chr [1:11332] "PF" "DM" "DM" "DM" ...
$ sex : chr [1:11332] "F" "M" "M" "M" ...
$ hindfoot_length: num [1:11332] 16 36 36 37 36 16 34 37 39 40 ...
$ weight : num [1:11332] 7 27 25 25 47 9 27 66 49 54 ...

36 SESSION 2. DATA VISUALIZATION IN R

$ date : Date[1:11332], format: "1996-01-27" "1996-01-27" ...
$ day_of_week : chr [1:11332] "Sat" "Sat" "Sat" "Sat" ...
$ plot_type : chr [1:11332] "Long-term Krat Exclosure" "Spectab exclosure" "Control" "Control" ...
$ genus : chr [1:11332] "Perognathus" "Dipodomys" "Dipodomys" "Dipodomys" ...
$ species : chr [1:11332] "flavus" "merriami" "merriami" "merriami" ...
$ taxa : chr [1:11332] "Rodent" "Rodent" "Rodent" "Rodent" ...
- attr(*, "spec")=
.. cols(
.. record_id = col_double(),
.. month = col_double(),
.. day = col_double(),
.. year = col_double(),
.. plot_id = col_double(),
.. species_id = col_character(),
.. sex = col_character(),
.. hindfoot_length = col_double(),
.. weight = col_double(),
.. date = col_date(format = ""),
.. day_of_week = col_character(),
.. plot_type = col_character(),
.. genus = col_character(),
.. species = col_character(),
.. taxa = col_character()
..)
- attr(*, "problems")=<externalptr>

Preview the data
View(surveys)

A tibble: 11,332 x 15
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M 36 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM M 37 25
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F 16 9
7 23222 1 27 1996 1 DM M 34 27
8 23223 1 27 1996 2 DO M 37 66
9 23224 1 27 1996 17 DM F 39 49
10 23225 1 27 1996 2 DM M 40 54
i 11,322 more rows
i 6 more variables: date <date>, day_of_week <chr>, plot_type <chr>,

2.3. PLOTTING WITH GGPLOT2 37

genus <chr>, species <chr>, taxa <chr>

At the top of the str() output, notice that the class of the data is a tibble. Tibbles tweak some of the behaviors of
the data frame objects we introduced in the previous workshop. The data structure is very similar to a data frame, so
for our purposes the only differences are that:

1. In addition to displaying the data type of each column under its name, it only prints the first few rows of data
and only as many columns as fit on one screen.

2. Columns of class character are never converted into factors.

2.3 Plotting with ggplot2

ggplot2 functions like data in the ‘long’ format, i.e., a column for every dimension, and a row for every observation.
There are other data formats, which we will discuss in the Data Wrangling in R workshop, as well as how to convert
from one data format to another. Well‐structured data will save you lots of time when making figures with ggplot2
and when working in R!

ggplot() graphics are built step by step by adding new elements. Adding layers in this fashion allows for extensive
flexibility and customization of plots.

To build a ggplot(), we will use the following basic template that can be used for different types of plots:

ggplot(data = <DATA>, mapping = aes(<VARIABLE MAPPINGS>)) + <GEOM_FUNCTION>()

Let’s go through this step by step!

1. Use the ggplot() function and bind the plot to a specific data frame using the data argument

ggplot(data = surveys)

Creates a blank ggplot(), referencing the surveys dataset

2. Define a mapping (using the aesthetic (aes) function), by selecting the variables to be plotted and specifying
how to present them in the graph, e.g. as x/y positions or characteristics such as size, shape, color, etc.

ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length))

38 SESSION 2. DATA VISUALIZATION IN R

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

Creates a blank ggplot(), with the variables mapped to the x- and y-axis
ggplot() knows where the variables live, since you have defined the data to
use

3. Add “geoms” – graphical representations of the data in the plot (points, lines, bars). ggplot2 offers many
different geoms; we will use some common ones today, including:

• geom_point() for scatter plots, dot plots, etc.
• geom_boxplot() for boxplots
• geom_bar() for bar charts
• geom_line() for trend lines, time series, etc.

To add a geom to the plot use the + operator. Because we have two continuous variables in the data, let’s use
geom_point() first:

ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length)) + geom_point()

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

Adds a point for each row (observation) in the data

You can think of the + sign as adding layers to the plot. Each + sign must be placed at the end of the line containing
the previous layer. If, instead, the + sign is added at the beginning of the line containing the new layer, ggplot2 will
not add the new layer and will return an error message.

2.3. PLOTTING WITH GGPLOT2 39

This will not add the new layer and will return an error message
ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length))

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

+geom_point()

Error:
! Cannot use `+` with a single argument.
i Did you accidentally put `+` on a new line?

2.3.1 Building Plots Iteratively

Building plots with ggplot2 is typically an iterative process. We start by defining the dataset we’ll use, lay out the
axes, and choose a geom:

ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length)) + geom_point()

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

Then, we start modifying this plot to extract more information from it. For instance, we can add transparency (alpha)
to the points, to avoid overplotting:

ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length)) + geom_point(alpha = 0.2)

40 SESSION 2. DATA VISUALIZATION IN R

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

alpha reduces the opacity of the points 0 is fully transparent 1 is the
original opacity

We can also add colors for all the points:

ggplot(data = surveys, mapping = aes(x = weight, y = hindfoot_length)) + geom_point(alpha = 0.2,
color = "blue")

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

geom_point also accepts aesthetics of size and shape. The size of a point is its width in mm. The shape of a point
has five different options for plotting:

• an integer [0, 25] of defined plotting characters – same as base R
• the name of the shape in quotations (e.g. “circle open” or “diamond filled”)
• a single character, to use that character as a plotting symbol
• a “.” to draw the smallest point that is visible – typically 1 pixel
• an NA, to draw nothing

Reference for shapes in integers and characters:
https://ggplot2.tidyverse.org/articles/ggplot2‐specs.html

https://ggplot2.tidyverse.org/articles/ggplot2-specs.html

2.3. PLOTTING WITH GGPLOT2 41

2.3.2 Challenge 1

Copy and paste the code from the previous code chunk and modify it to assign one of these aesthetics to
the geom_point aspect of your plot.

What happened?

Your ggplot code to answer the challenge goes here!

2.3.3 Piping Data In

Because ggplot2 lives in the tidyverse, it is expected to work well with other packages in the tidyverse. Because
of this, the first argument to creating a ggplot() is the dataset you wish to be working with. The pipe operator sends
the output of one function directly into the next function, which is useful when you need to do many things to the
same dataset. Since the dataset we wish to use is the first argument to ggplot(), we can use the pipe operator to
pipe the data into the ggplot() function!

Pipes in R look like %>% and aremade available via the magrittr package, installed automatically with the tidyverse.
If you use RStudio, you can type the pipe with Ctrl + Shift + M if you have a PC or Cmd + Shift + M if you have
a Mac.

Note: There is now (as of R 4.1.0) a native R pipe |> that works similar to the %>% pipe operator with
minor differences that you may encounter, but since we are working in the tidyversewe will stick with
their pipe operator (%>%). If you want to switch which pipe operator is used with the shortcut keys, you
can go to Tools > Global Options... > Code and check (or uncheck) the option “Use native pipe
operator, |> (requires R 4.1+)”.

This would instead look like this:

surveys %>%
data to be used in the ggplot

ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() ggplot(mapping
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() =
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() aes(x
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() =
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() weight,
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() y
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() =
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() hindfoot_length))
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() +
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() ##
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() uses
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() the
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() data
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() piped
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() in
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() as
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() the

42 SESSION 2. DATA VISUALIZATION IN R

ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() first
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() argument
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() to
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + ## uses the data piped in as the first argument to ggplot() ggplot()
geom_point(alpha = 0.2, color = "blue")

Error in `geom_blank()`:
! Problem while computing aesthetics.
i Error occurred in the 1st layer.
Caused by error:
! object 'weight' not found

Once we pipe the data in, the first argument becomes the mapping of the aesthetics. Technically, we are using the
name of this argument, which is why it looks like:

mapping = aes(<VARIABLES>)

When we pipe our data in, the first argument then becomes this mapping argument.

2.3.4 Assigning More Variables to Aesthetics

To color each species in the plot differently, you could use a vector as an input to the argument color. ggplot2 will
provide a different color corresponding to different values in the vector. Here is an example where we color with
species_id:

surveys %>%
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + geom_point(alpha = 0.2,
aes(color = species_id))

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

Note: When specifying an alpha for a scatterplot, it automatically uses that same alpha in the legend. To remedy
this you can add:

2.3. PLOTTING WITH GGPLOT2 43

guides(color = guide_legend(override.aes = list(alpha = 1)))

to your plot. This customizes the legend appearance, similar to what we will see in the customization section.

We can also specify the colors directly inside the mapping provided in the ggplot() function. This will be seen by
any geom layers and the mapping will be determined by the x‐ and y‐axis set up in aes().

surveys %>%
ggplot(mapping = aes(x = weight, y = hindfoot_length, color = species_id)) +
geom_point(alpha = 0.2)

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

Notice that we can change the geom layer and colors will be still determined by species_id

2.3.5 Local Aesthetics versus Global Aesthetics

When you define aesthetics in the ggplot() function, those mappings hold for every aspect of your plot.

For example, if you chose to add a smoothing line to your plot ofweight versus hindfoot length, youwould get different
lines depending on where you define your color aesthetics.

Globally

surveys %>%
ggplot(mapping = aes(x = weight, y = hindfoot_length, color = species_id)) +
geom_jitter(alpha = 0.2) + geom_smooth()

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

44 SESSION 2. DATA VISUALIZATION IN R

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

smoothing line for each species_id -- because color is defined globally

Locally

surveys %>%
ggplot(mapping = aes(x = weight, y = hindfoot_length)) + geom_jitter(aes(color = species_id),
alpha = 0.2) + geom_smooth()

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

0

20

40

60

0 100 200
weight

hi
nd

fo
ot

_l
en

gt
h

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

one smoothing line -- no color defined globally

2.3.6 Challenge 2 (Part 1)

Inspect thegeom_pointhelp file (either go to https://ggplot2.tidyverse.org/reference/geom_point.html
or run ?geom_point) to see what other aesthetics are available. Map a new variable from the dataset

https://ggplot2.tidyverse.org/reference/geom_point.html

2.3. PLOTTING WITH GGPLOT2 45

to another aesthetic in your plot. What happened? Does the aesthetic change if you use a continuous
variable versus a categorical/discrete variable?

Your ggplot() code for the challenge goes here!

2.3.7 Challenge 2 (Part 2)

Use what you just learned to create a scatter plot of weight over plot_id with data from different plot
types being showed in different colors. Is this a good way to show this type of data?

Your ggplot() code for the challenge goes here!

2.3.8 Boxplots & Violin Plots

Boxplots provide a visualization of a quantitative variables across different levels of a categorical (grouping) variable.
For example, we can use boxplots to visualize the distribution of weight within each species:

surveys %>%
ggplot(mapping = aes(x = species_id, y = weight)) + geom_boxplot()

0

100

200

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

w
ei

gh
t

By adding points to boxplot, we can have a better idea of the number of measurements and their distribution:

surveys %>%
ggplot(mapping = aes(x = species_id, y = weight)) + geom_boxplot(alpha = 0) +
alpha = 0 eliminates the black (possible outlier) points, so they're not
plotted twice

geom_jitter(alpha = 0.2, color = "tomato")

46 SESSION 2. DATA VISUALIZATION IN R

0

100

200

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

w
ei

gh
t

alpha = 0.2 decreases the opacity of the points, to not be too busy

Notice how the boxplot layer is behind the jitter layer? What would you change in the code to put the
boxplot in front of the points?

2.3.9 Challenge 3 (Part 1)

Boxplots are useful summaries, but hide details of the shape of the distribution. For example, if the
distribution is bimodal, we would not see it in a boxplot. A superior density plot is the violin plot, where
the shape (of the density of points) is drawn.

Replace the box plot with a violin plot. For help see geom_violin(). Start with the boxplot we created:

ggplot(data = surveys, mapping = aes(x = species_id, y = weight)) + geom_boxplot(alpha = 0) +
geom_jitter(alpha = 0.2, color = "tomato")

0

100

200

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

w
ei

gh
t

Start with the boxplot we created 1. Replace the boxplot with a violin plot.
For help, see geom_violin(). You might need to decrease opacity even more
to see the violins (try 0.03)

2.3. PLOTTING WITH GGPLOT2 47

2.3.10 Challenge 3 (Part 2)

So far, we’ve looked at the distribution of weight within species. Let’s try making a new plot to explore
the distribution of another variable within each species.

Create a boxplot for hindfoot_length. This time overlay the boxplot layer over a jitter layer that shows
the actual measurements.

First: create boxplot for hindfoot_length` overlaid on a jitter layer.

2.3.11 Challenge 3 (Part 3)

Now, add color to the data points on your boxplot according to the plot fromwhich the sample was taken
(plot_id).

Hint: Check the class for plot_id. If plot_idwas a character instead, howwould the graph be different?

Next: add color to the data points on your boxplot according to the plot
from which the sample was taken (plot_id).

Hint: Check the class for plot_id`. If plot_id was a character instead, how
would the graph be different?

2.3.12 Bonus violin plot example (DatasauRus)

The previous example doesn’t fully illustrate the power of violin plots. This example from the
datasauRus package (https://www.autodeskresearch.com/publications/samestats) shows five dif‐
ferent distributions that have exactly the same summary statistics and boxplots but very different
shapes:

library(datasauRus)
data(box_plots)

box_plots_long <- box_plots %>%
pivot_longer(cols = 1:5)

box_plots_long <- box_plots_long %>%
rename(Example = name, Response = value)

box_plots_long <- box_plots_long %>%
mutate(Example = factor(Example))

ggplot(box_plots_long, aes(x = Example, y = Response)) + geom_violin(fill = "bisque") +
geom_boxplot(alpha = 0.6) + geom_jitter(alpha = 0.15, col = "tomato") + theme_minimal() +
scale_x_discrete(labels = c("Trimodal, Right Skew", "Clumpy", "Normal", "Trimodal, Left Skew",

"Bimodal"))

https://www.autodeskresearch.com/publications/samestats

48 SESSION 2. DATA VISUALIZATION IN R

−10

−5

0

5

10

Trimodal, Right Skew Clumpy Normal Trimodal, Left Skew Bimodal
Example

R
es

po
ns

e

2.4 Plotting Single Variables

2.4.1 Distribution Plots (Quantitative Variables)

If we wish to visualize the distribution of a single quantitative variable, our plot changes a bit. Unfortunately, the
geom_violin() function only accepts groups, so we cannot make a violin plot with no groups. Darn it!

But, a violin is simply a density plot that’s been reflected across the y‐axis. So, we could likely suffice with a density
plot.

To visualize the distribution of rodent weights we could aggregate over all species, years, plots, etc. and produce a
single density plot:

surveys %>%
ggplot(mapping = aes(x = weight)) + geom_density()

0.00

0.01

0.02

0 100 200
weight

de
ns

ity

The default is an empty density plot, which is largely unsatisfying. By adding a fill = <COLOR> argument to
geom_density() we can produce a nicer looking plot:

surveys %>%
ggplot(mapping = aes(x = weight)) + geom_density(fill = "sky blue")

2.4. PLOTTING SINGLE VARIABLES 49

0.00

0.01

0.02

0 100 200
weight

de
ns

ity

50 SESSION 2. DATA VISUALIZATION IN R

Another frequently used plot for a single quantitative variable is the histogram. The same plot as above can be recre‐
ated using geom_histogram() instead of geom_density(). However, when you use geom_histogram() it gives
you a warning.

surveys %>%
ggplot(mapping = aes(x = weight)) + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

1000

2000

0 100 200
weight

co
un

t

What warning do you get and why? Do you get an error like this when you use hist() in base R?

hist(surveys$weight)

Histogram of surveys$weight

surveys$weight

F
re

qu
en

cy

0 50 100 150 200 250

0
30

00

There is no single right answer for the number of bins. There are some “plug‐in” choices for number of bins that can
be used, but you are always welcome to explore different numbers of bins to see if features you are seeing persist
when you choose more or less bins.

2.4.2 Challenge 4

Use the bins argument in geom_histogram() to play aroundwith the number of bins in your histogram.
Try different numbers of bins to explore how that changes the results!

Your code to answer the challenge goes here!

2.4. PLOTTING SINGLE VARIABLES 51

2.4.3 Bar Charts (Categorical Variables)

At first glimpse, you would think that a bar plot would be simple to create, but bar plots reveal a subtle nuance of the
plots we have created thus far. The following bar chart displays the total number of rodents in the surveys dataset,
grouped by their species ID.

surveys %>%
ggplot(mapping = aes(x = species_id)) + geom_bar()

0

1000

2000

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t

The x‐axis displays the levels of species_id, a variable in the surveys dataset. On the y‐axis count is displayed, but
count is not a variable in our dataset! Where did count come from? Graphs, such as the scatterplots, display the
raw values of your data. Other graphs, like bar charts and boxplots, calculate new values (from your data) to plot.

• Bar charts and histograms bin your data and then plot the number of observations that fall in each bin.

• Boxplots find summaries of your data (min, max, quartiles, median) and plot those summaries in a tidy box,
with “potential outliers” (data over 1.5*IQR from Q1 or Q3) plotted as points.

• Smoothers (as used in geom_smooth) fit amodel to your data (you can specify, butwe used the gam (generalized
additive model from the mgcv package) default) and then plot the predicted means from that model (with
associated 95% confidence intervals).

To calculate each of these summaries of the data, R uses a different statistical transformation, or stat for short. With
a bar chart this looks like the following process:

1. geom_bar first looks at the entire data frame

2. geom_bar then transforms the data using the count statistic

3. the count statistic returns a data frame with the number of observations (rows) associated with each level of
species_id

4. geom_bar uses this summary data frame, to build the plot – levels of species_id are plotted on the x‐axis and
count is plotted on the y‐axis

Generally, you can use geoms and stats interchangeably. This is because every geom has a default stat and vice

52 SESSION 2. DATA VISUALIZATION IN R

versa. For example, the following code produces the same output as above:

surveys %>%
ggplot(mapping = aes(x = species_id)) + stat_count()

0

1000

2000

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t

If you so wish, you could override the default stat for that geom. For example, if you wanted to plot a bar chart of
proportions you would use the following code to override the count stat:

surveys %>%
ggplot(mapping = aes(x = species_id)) + geom_bar(aes(y = after_stat(prop), group = 1))

0.00

0.05

0.10

0.15

0.20

0.25

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

pr
op

2.4.4 Challenge 5

Why do we need to set group = 1 in the above proportion bar chart? In other words, what is wrong
with the plot below?

What is wrong with this plot?
surveys %>%

ggplot(mapping = aes(x = species_id)) + geom_bar(aes(y = after_stat(prop)))

2.4. PLOTTING SINGLE VARIABLES 53

0.00

0.25

0.50

0.75

1.00

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

pr
op

2.4.5 Colored and/or Stacked Bar Charts

Another piece of visual appeal to creating a bar chart is the ability to use colors to differentiate the different groups,
or to plot two different variables in one bar chart (stacked bar chart). Let’s start with adding color to our bar chart.

2.4.5.1 Coloring Bars

As we saw before, to add a color aesthetic to the plot we need to map it to a variable. However, if we use the color
option that we used before we get a slightly unsatisfying result.

surveys %>%
ggplot(mapping = aes(x = species_id, color = species_id)) + geom_bar()

0

1000

2000

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

We notice that the color only appears in the outline of the bars. For a bar chart, the aesthetic that we are interested
in is the fill of the bars.

54 SESSION 2. DATA VISUALIZATION IN R

2.4.6 Challenge 6

Change the code below so that each bar is filled with a different color.

surveys %>%
ggplot(mapping = aes(x = species_id, color = species_id)) + geom_bar()

0

1000

2000

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t

species_id

DM

DO

NL

OL

OT

PB

PE

PF

PM

PP

RM

SH

2.4.6.1 Stacking Bars

Now suppose you are interested in whether the number of male and female rodents captured differs by species. This
would require for you to create a bar plot with two categorical variables. You have two options:

1. each of the bars for sex could be stacked within a species OR
2. the bars for sex could be side‐by‐side within a species

Let’s see how the two approaches differ. To stack bars of a second categorical variable we would instead use this
second categorical variable as the fill of the bars. Run these two lines of code and see how they differ.

surveys %>%
ggplot(mapping = aes(x = species_id, fill = sex)) + geom_bar()

0

1000

2000

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t sex

F

M

2.5. TIME‐SERIES DATA 55

surveys %>%
ggplot(mapping = aes(x = species_id, fill = sex)) + geom_bar(position = "dodge")

0

500

1000

1500

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t sex

F

M

In the first plot, the position was chosen automatically, but in the second plot the position argument was made
explicit. What changes did this make in the plots?

Finally, we can also choose the position to be fill for the bars and to fill the bars based on sex:

surveys %>%
ggplot(mapping = aes(x = species_id, fill = sex)) + geom_bar(position = "fill")

0.00

0.25

0.50

0.75

1.00

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

co
un

t sex

F

M

Notice that the y‐axis label still says “count” instead of “proportion”. We will learn how to change labels later when
we discuss Customization.

2.5 Time‐series Data

Let’s calculate number of counts per year for each genus.

Preview of Data Wrangling: First we need to group the data and count records within each group!

yearly_counts <- surveys %>%
count(year, genus)

56 SESSION 2. DATA VISUALIZATION IN R

counts the number of observations (rows) for each year, genus combination
and creates a new variable 'n' and creates a new variable 'n'

yearly_counts

A tibble: 52 x 3
year genus n
<dbl> <chr> <int>
1 1996 Chaetodipus 328
2 1996 Dipodomys 650
3 1996 Neotoma 6
4 1996 Onychomys 121
5 1996 Perognathus 324
6 1996 Peromyscus 85
7 1996 Reithrodontomys 90
8 1997 Chaetodipus 573
9 1997 Dipodomys 824
10 1997 Neotoma 43
i 42 more rows

Time series data can be visualized as a line plot with years on the x‐axis and counts on the y‐axis:

yearly_counts %>%
ggplot(mapping = aes(x = year, y = n)) + geom_line()

0

400

800

1200

1996 1998 2000 2002
year

n

Unfortunately, this does not work because we plotted data for all the genera together. We need to tell ggplot() to
draw a line for each genus by modifying the aesthetic function to include group = genus:

yearly_counts %>%
ggplot(mapping = aes(x = year, y = n, group = genus)) + geom_line()

2.5. TIME‐SERIES DATA 57

0

400

800

1200

1996 1998 2000 2002
year

n

Unfortunately, we can’t tell what line corresponds to which genus. We will be able to distinguish genera in the plot if
we add colors (using color also automatically groups the data):

yearly_counts %>%
ggplot(mapping = aes(x = year, y = n, color = genus)) + geom_line()

0

400

800

1200

1996 1998 2000 2002
year

n

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

Note: When specifying the color for a line graph, you don’t need to use both the color = <VARIABLE>
argument and the group = <VARIABLE> argument. Both do the same grouping of observations! So
you just need to specify the color argument.

2.5.1 Faceting

ggplot2 has a special technique called faceting that allows the user to split one plot into multiple plots based on a
categorical variable included in the dataset.

There are two types of facet functions:

• facet_wrap() arranges a one‐dimensional sequence of panels to allow them to cleanly fit on one page – used
for one variable

• facet_grid() allows you to form a matrix of rows and columns of panels – used for two variables

Both geometries allow you to specify faceting variables using formula notation or the vars() function. We will use

58 SESSION 2. DATA VISUALIZATION IN R

the formula notation, as you will use this notation when creating models (not covered in this workshop).

This looks like: facet_wrap(facets = ~ facet_variable)orfacet_grid(row_variable ~ col_variable).

Let’s start by using facet_wrap() to make a time series plot for each species:

yearly_counts %>%
ggplot(mapping = aes(x = year, y = n)) + geom_line() + facet_wrap(facets = ~genus)

Reithrodontomys Sigmodon

Onychomys Perognathus Peromyscus

Chaetodipus Dipodomys Neotoma

1996 1998 2000 20021996 1998 2000 2002

1996 1998 2000 2002

0
400
800

1200

0
400
800

1200

0
400
800

1200

year

n

Nowwe would like to split the line in each plot by the sex of the rodent captured. To do that we need to make counts
in the data frame grouped by year, species_id, and sex:

yearly_sex_counts <- surveys %>%
count(year, species_id, sex)

counts the number of observations (rows) for each year, species, sex
combination

yearly_sex_counts

A tibble: 148 x 4
year species_id sex n
<dbl> <chr> <chr> <int>
1 1996 DM F 188
2 1996 DM M 296
3 1996 DO F 79
4 1996 DO M 87
5 1996 NL F 2
6 1996 NL M 4
7 1996 OL F 4
8 1996 OL M 9
9 1996 OT F 60
10 1996 OT M 48

2.5. TIME‐SERIES DATA 59

i 138 more rows

We can now make the faceted plot by splitting further by sex using color (within each panel):

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(facets = ~species_id)

PM PP RM SH

OT PB PE PF

DM DO NL OL

1996 1998 2000 20021996 1998 2000 20021996 1998 2000 20021996 1998 2000 2002

0

200

400

0

200

400

0

200

400

year

n

sex

F

M

You can also organize the panels only by rows (or only by columns), using the optional nrow and ncol arguments:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id,
ncol = 1)

60 SESSION 2. DATA VISUALIZATION IN R

SH

RM

PP

PM

PF

PE

PB

OT

OL

NL

DO

DM

1996 1998 2000 2002

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

year

n

sex

F

M

One column, facet by rows

2.5. TIME‐SERIES DATA 61

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id,
nrow = 1)

DM DO NL OL OT PB PE PF PM PP RM SH

199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002

0

200

400

year

n

sex

F

M

One row, facet by columns

Now let’s use facet_grid() to control how panels are organized by both rows and columns:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_grid(sex ~
species_id)

62 SESSION 2. DATA VISUALIZATION IN R

DM DO NL OL OT PB PE PF PM PP RM SH

F
M

199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002199619982000200219961998200020021996199820002002

0

200

400

0

200

400

year

n

sex

F

M

2.5.2 Challenge 7

Use what you just learned to create a plot that depicts how the average weight of each species changes
through the years. Play around with which variable you facet by versus plot by!

To get you started:
yearly_species_weight <- surveys %>%

group_by(year, species_id) %>%
Variables to group by

summarize(avg_weight = mean(weight))

`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.

Edit the following ggplot() code for the plot here:
yearly_species_weight %>%

ggplot(mapping = aes(x = year, y = n, color = avg_weight)) + geom_line() + facet_wrap(facets = ~species_id)

Don't know how to automatically pick scale for object of type <function>.
Defaulting to continuous.

Error in `geom_line()`:
! Problem while computing aesthetics.
i Error occurred in the 1st layer.
Caused by error in `compute_aesthetics()`:
! Aesthetics are not valid data columns.
x The following aesthetics are invalid:
x `y = n`
i Did you mistype the name of a data column or forget to add
`after_stat()`?

Your ggplot() code for the plot goes here!

2.6. GGPLOT2 THEMES 63

2.6 ggplot2 Themes

Usually plots with white background lookmore readable when printed. Every single component of a ggplot() graph
can be customized using the generic theme() function, as we will see below. However, there are pre‐loaded themes
available that change the overall appearance of the graph without much effort.

For example, we can change our previous graph to have a simpler white background using the theme_bw() function:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
theme_bw()

PM PP RM SH

OT PB PE PF

DM DO NL OL

1996 1998 2000 20021996 1998 2000 20021996 1998 2000 20021996 1998 2000 2002

0
200
400

0
200
400

0
200
400

year

n

sex

F

M

In addition to theme_bw(), which changes the plot background to white, ggplot2comes with several other themes
which can be useful to quickly change the look of your visualization. The complete list of themes is available at
https://ggplot2.tidyverse.org/reference/ggtheme.html. theme_minimal() and theme_light() are popular, and
theme_void() can be useful as a starting point to create a new hand‐crafted theme.

The ggthemes package provides awide variety of options. The ggplot2 extensionswebsite provides a list of packages
that extend the capabilities of ggplot2, including additional themes.

2.6.1 Challenge 8

Use what you just learned to add the plotting background theme of your choosing to the plot you made
in Challenge 7!

Your ggplot() code for the plot goes here!

2.7 Customization

Take a look at the ggplot2 cheat sheet, and think of ways you could improve the previous plot.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://jrnold.github.io/ggthemes/reference/index.html
https://exts.ggplot2.tidyverse.org/
https://github.com/rstudio/cheatsheets/blob/main/data-visualization-2.1.pdf

64 SESSION 2. DATA VISUALIZATION IN R

2.7.1 Plot Labels

Now, let’s change names of axes to something more informative than ‘year’ and ‘n’ and add a title to the figure. Label
customizations are done using the labs() function like so:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
theme_bw() + labs(title = "Observed Species Through Time", x = "Year of Observation",
y = "Number of Rodents", color = "Sex")

PM PP RM SH

OT PB PE PF

DM DO NL OL

1996199820002002199619982000200219961998200020021996199820002002

0
200
400

0
200
400

0
200
400

Year of Observation

N
um

be
r

of
 R

od
en

ts

Sex

F

M

Observed Species Through Time

Tip: Wrapping Titles

Sometimes the titles we wish to have for our plots are longer than the space originally allotted. If you
create a title and the text is running off the plot you can add a \n inside your title to force a line break
(\n stands for new line).

2.7.2 Label & Plot Fonts

Note that it is also possible to change the fonts of your plots. If you are on Windows, you may have to install the
extrafont package, and follow the instructions included in the README for this package.

In the last plot, the axes have more informative names, but their readability can be improved by increasing the font
size. This can be done with the generic theme() function.

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
theme_bw() + labs(title = "Observed Species Through Time", x = "Year of Observation",
y = "Number of Rodents", color = "Sex") + theme(text = element_text(size = 16))

https://github.com/wch/extrafont

2.7. CUSTOMIZATION 65

PM PP RM SH

OT PB PE PF

DM DO NL OL

1996199820002002199619982000200219961998200020021996199820002002

0200400

0200400

0200400

Year of ObservationN
um

be
r

of
 R

od
en

ts
Sex

F
M

Observed Species Through Time

sets ALL the text on the plot to be size 16

Note:
theme_bw() is a function for a specific theme and theme() is a generic function for a variety of different themes!

After our manipulations, you may notice that the values on the x‐axis are still not properly readable. Let’s swap the
orientation of the labels, so the reader doesn’t have to tilt their head when reading our plot! The coord_flip()
function easily changes the x‐ and y‐axis.

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
theme_bw() + labs(title = "Observed Species by \n Year of Observation", x = "Year of Observation",
y = "Number of Rodents", color = "Sex") + theme(text = element_text(size = 16)) +
coord_flip()

PM PP RM SH

OT PB PE PF

DM DO NL OL

0 200 400 0 200 400 0 200 400 0 200 400

1996
1998
2000
2002

1996
1998
2000
2002

1996
1998
2000
2002

Number of Rodents

Ye
ar

 o
f O

bs
er

va
tio

n

Sex
F
M

Observed Species by
 Year of Observation

66 SESSION 2. DATA VISUALIZATION IN R

This definitelymakes the reader tilt their head less! But, the text on the x‐axis is a bit too large to separate the numbers.
We can specify the text size for each element of the plot independently, if we so wish. This would look something like
this:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
theme_bw() + labs(title = "Observed Species by Year of Observation", x = "",
y = "Number of Rodents", color = "Sex") + theme(axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 12), axis.title.x = element_text(size = 14),
legend.text = element_text(size = 12), legend.title = element_text(size = 12),
plot.title = element_text(size = 16)) + coord_flip()

PM PP RM SH

OT PB PE PF

DM DO NL OL

0 200 400 0 200 400 0 200 400 0 200 400

1996
1998
2000
2002

1996
1998
2000
2002

1996
1998
2000
2002

Number of Rodents

Sex

F
M

Observed Species by Year of Observation

2.7.3 Legend Position

By default in ggplot2 the legend is positioned on the right hand side. However, you are able to change the position
of the legend to the left hand side, the top of the plot, or the bottom of the plot.

This is done by adding a legend.position theme to the plot’s theme()’s.

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) + geom_line() + facet_wrap(~species_id) +
labs(title = "Observed Species by Year of Observation by Sex", x = "Year of Observation",

y = "Number of Rodents", color = "Sex") + theme_bw() + theme(axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 12), axis.title.x = element_text(size = 14),
legend.text = element_text(size = 12), legend.title = element_text(size = 14),
plot.title = element_text(size = 14), legend.position = "top") + coord_flip()

2.7. CUSTOMIZATION 67

PM PP RM SH

OT PB PE PF

DM DO NL OL

0 200 400 0 200 400 0 200 400 0 200 400

1996
1998
2000
2002

1996
1998
2000
2002

1996
1998
2000
2002

Number of Rodents

Ye
ar

 o
f O

bs
er

va
tio

n
Sex F M

Observed Species by Year of Observation by Sex

2.7.4 Removing Grid Lines

By default, the background of a ggplot() contains both minor and major gridlines. These can make the plot look
a bit busy and sometimes difficult for the reader to follow. As you may have guessed, to remove these gridlines, we
add another theme to our plot.

This looks like this:

yearly_sex_counts %>%
ggplot(mapping = aes(x = year, y = n, color = sex)) +
geom_line() +
facet_wrap(~ species_id) +
labs(title = "Observed Species by Year of Observation by Sex",

x = "Year of Observation",
y = "Number of Rodents",
color = "Sex") +

theme(axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
legend.text = element_text(size = 12),
legend.title = element_text(size = 14),
plot.title = element_text(size = 14),
legend.position = "top",
New themes for the grid lines
axis.line = element_line(color = "black"),

68 SESSION 2. DATA VISUALIZATION IN R

##
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank()) +

coord_flip()

PM PP RM SH

OT PB PE PF

DM DO NL OL

0 200 400 0 200 400 0 200 400 0 200 400

1996
1998
2000
2002

1996
1998
2000
2002

1996
1998
2000
2002

Number of Rodents

Ye
ar

 o
f O

bs
er

va
tio

n

Sex F M

Observed Species by Year of Observation by Sex

Let’s break these options down!

• The axis.line option declares what color the x‐ and y‐axis lines should be. (Change it to a different color, if
you don’t believe me!)

• The panel.grid.major removes the major grid (the one associated with the ticks from the x‐ and y‐axis).

• The panel.grid.minor removes the minor grid (the one between the x‐ and y‐axis ticks).

• The panel.border removes the border around the plot.

• The panel.background performs a similar action to theme_bw(), but it keeps the border around the facet
labels.

2.7.5 Changing Colors

The built in ggplot() color scheme may not be what you were looking for, but don’t worry! There are many other
color palettes available to use!

You can change the colors used by ggplot() a few different ways.

2.7. CUSTOMIZATION 69

2.7.5.1 Manual Specification

Add the scale_color_manual() or scale_fill_manual() functions to your plot and directly specify the colors
you want to use. You can either:

• defining a vector of colors right there (e.g. values = c("blue", "black", "red", "green"))

• creating a vector of colors and storing it in an object and calling it (see below)

A color deficient friendly palette with grey:
cbPalette_grey <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",

"#D55E00", "#CC79A7")

A color deficient friendly palette with black:
cbPalette_blk <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",

"#D55E00", "#CC79A7")

surveys %>%
ggplot(aes(x = species_id, y = hindfoot_length, color = genus)) + geom_boxplot() +
scale_color_manual(values = cbPalette_grey)

0

20

40

60

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

surveys %>%
ggplot(aes(x = species_id, y = hindfoot_length, color = genus)) + geom_boxplot() +
scale_color_manual(values = cbPalette_blk)

70 SESSION 2. DATA VISUALIZATION IN R

0

20

40

60

DM DO NL OL OT PB PE PF PM PP RM SH
species_id

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

2.7.5.2 Package Specification

Install a package and use it’s available color scales. Popular options include:

• RColorBrewer: using scale_fill_brewer() or scale_color_brewer()

• viridis: using scale_color_viridis_d() for discrete data, scale_color_viridis_c() for continuous
data, with an inside argument of option = <COLOR> for your chosen color scheme

• ggsci: using scale_color_<PALNAME>() or scale_fill_<PALNAME>(), where you specify the name of
the palette you wish to use (e.g., scale_color_aaas())

2.7.6 Challenge 9

With all of this information in hand, please take another five minutes to either improve one of the plots
generated in this exercise or create a beautiful graph of your own. Use the RStudio ggplot2 cheat sheet
for inspiration. Here are some ideas:

• See if you can change the thickness of the lines.
• Try using a different color palette
• Can you find a way to change the name of the legend? What about its labels? (see http://www.

cookbook‐r.com/Graphs/Colors_(ggplot2)/).

your code for the challenge goes here!

2.8 Arranging Plots

Faceting is a great tool for splitting one plot into multiple plots, but sometimes you may want to produce a single
figure that contains multiple plots using different variables or even different data frames. The gridExtra package
allows us to combine separate ggplots into a single figure using grid.arrange() (make sure to scroll down in the
window to see all the code):

library(gridExtra)

https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

2.8. ARRANGING PLOTS 71

spp_weight_boxplot <- surveys %>%
ggplot(aes(x = genus, y = weight)) +
geom_violin() +
geom_jitter(color = "tomato", width = 0.2, alpha = 0.2) +
scale_y_log10() +
log (base 10) transforms the y-axis variable
(helps to make the plot less skewed)
labs(x = "",

removes the y-axis label
y = expression(Log[10](Weight))) +
Expression creates a mathematical expression in the axis label
the [10] refers to the subscript next to Log

coord_flip() +
theme(axis.text.y = element_text(size = 12),

axis.text.x = element_text(size = 12),
text = element_text(size = 16))

spp_count_plot <- yearly_counts %>%
ggplot(aes(x = year, y = n, color = genus)) +
geom_line() +
labs(x = "Year",

y = "Abundance",
color = "Genus") +

theme(axis.title.x = element_text(face = "bold", size = 12))
To make your axis title boldface, this is what you need!

grid.arrange(spp_weight_boxplot, spp_count_plot, ncol = 2, widths = c(4, 6))

72 SESSION 2. DATA VISUALIZATION IN R

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

10 30 100 300

Log10(Weight)

0

400

800

1200

1996 1998 2000 2002

Year

A
bu

nd
an

ce

Genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

nrow and ncol specify how many rows/columns you want the arranged plots to be in
widths specify what proportion of the overall plotting area each plot takes up

In addition to the ncol and nrow arguments, used to make simple arrangements, there are tools for constructing
more complex layouts.

Formore assistance arranging plots with grid.arrage(). We find the following vignette very helpful! https://cran.r‐
project.org/web/packages/egg/vignettes/Ecosystem.html

Another option for combining plots is the patchwork package. It uses a sort of formula interface for defining the
layout of multiple plots. For example, you can get two plots side‐by‐side in a one row, two column array with p1 +
p2 and two plots stacked into two rows and one column with p1 / p2. This provides both a quick and powerful way
to arrange ggplots you have created.

spp_weight_boxplot/spp_count_plot

https://cran.r-project.org/web/packages/gridExtra/vignettes/arrangeGrob.html
https://cran.r-project.org/web/packages/gridExtra/vignettes/arrangeGrob.html
https://cran.r-project.org/web/packages/egg/vignettes/Ecosystem.html
https://cran.r-project.org/web/packages/egg/vignettes/Ecosystem.html
https://patchwork.data-imaginist.com/

2.9. EXPORTING PLOTS 73

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

10 30 100 300

Log10(Weight)

0

400

800

1200

1996 1998 2000 2002

Year

A
bu

nd
an

ce

Genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

2.9 Exporting Plots

After creating your plot, you can save it to a file in your favorite format. The Export tab in the Plot pane in RStudio
will save your plots at low resolution, which will not be accepted by many journals and will not scale well for posters.

Instead, use the ggsave() function, which allows you easily change the dimension and resolution of your plot by
adjusting the appropriate arguments:

• width and height: adjust the total plot size in units (“in”, “cm”, or “mm”)
– If units are not specified, default is inches.

• dpi: adjusts the plot resolution. This accepts a string or numeric input:
– “retina” (320)
– “print” (300)
– “screen” (72)

Make sure you have the fig/ folder in your working directory. The first line of code checks to see if that folder exists,

74 SESSION 2. DATA VISUALIZATION IN R

and if not, creates it.

Specify where you want figures to be saved relative to current directory
if (!dir.exists("fig")) {

dir.create("fig")
}

my_plot <- ggplot(data = yearly_sex_counts, mapping = aes(x = year, y = n, color = sex)) +
geom_line() + facet_wrap(~species_id) + labs(title = "Observed genera through time",
x = "Year of observation", y = "Number of individuals") + theme_bw() + coord_flip() +
theme(axis.text.y = element_text(color = "grey20", size = 12), text = element_text(size = 16))

ggsave("fig/yearly_sex_counts.png", my_plot, width = 15, height = 10)

This also works for grid.arrange() plots
combo_plot <- grid.arrange(spp_weight_boxplot, spp_count_plot, ncol = 2, widths = c(4,

6))

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

1030100300

Log10(Weight)
0

400

800

1200

1996 1998 2000 2002

Year

A
bu

nd
an

ce

Genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

ggsave("fig/combo_plot_abun_weight.png", combo_plot, width = 10, dpi = 300)

Saving 10 x 4 in image

Note: The parameters width and height also determine the font size in the saved plot.

2.9. EXPORTING PLOTS 75

2.9.1 Interactive Graphics (Bonus Material)

In certain situations, static displays can limit the sorts of information available and do not allow easy interrogation for
information on individual aspects of plots. Obviously, most print journals do not have a way to have readers interact
with the printed page, but in digital venues there are some possibilities. Of particular interest here are interactive
graphics that can function on websites and in blog posts or even in certain presentation formats. One way to do this
that leverages the previous work in making ggplot‐style graphics is using the ggplotly function from the plotly
R package (Sievert, 2020). You can access the 2020 book that goes into more detail on plotly‐style graphics at
https://plotly‐r.com/.

To use ggplotly, we wrap that function around a ggplot object and it will render it in an interactive fashion when
the viewer hovers over individual plot components. There are also ways of making plotly graphs directly using
plot_ly and that may prove easier for some things, for example for making interactive three‐dimensional graphs.

Here are two examples that we worked with earlier converted into ggplotly objects that allow further interrogation
of the information displayed:

library(plotly)

spp_weight_boxplot <- surveys %>%
ggplot(aes(x = genus, y = weight)) +
geom_violin() +
geom_jitter(color = "tomato", width = 0.2, alpha = 0.2) +
scale_y_log10() +
log (base 10) transforms the y-axis variable
(helps to make the plot less skewed)
labs(x = "",

removes the y-axis label
y = "log10-Weight") +

coord_flip() + #Switches x and y axes
theme(axis.text.y = element_text(size = 12),

axis.text.x = element_text(size = 12),
text = element_text(size = 16)) +

theme_bw()

spp_count_plot <- yearly_counts %>%
ggplot(aes(x = year, y = n, color = genus)) +
geom_line() +
labs(x = "Year",

y = "Abundance",
color = "Genus") +

theme(axis.title.x = element_text(face = "bold", size = 12)) +
theme_bw()

ggplotly(spp_weight_boxplot);ggplotly(spp_count_plot)

https://plotly-r.com/

76 SESSION 2. DATA VISUALIZATION IN R

One note about using plotly graphics in R‐markdown is that they will not knit into word or PDF formats, only into
HTML (in word or PDF, you are stuck with static images but you could incorporate a link to a website containing
the interactive version of the plot). You can also interact with plots when working in markdown or running code
in the console in RStudio. For presentations, you can also record a video of interactions with plot to remove some
challenges of live presentations using this format. But if you are looking to wow your viewers in a digital format, need
to dig into some details of what is displayed in a plot quickly, or when static graphics are limiting your story‐telling
ability, remember that there might be another option!

Session 3

Coding with Generative AI

77

Generative AI
for Data Science

Greta Linse, Sara Mannheimer, Sally Slipher

August 8, 2025

Learning objectives

• Using AI responsibly and safely
• Pitfalls to be aware of
• Tips and examples for prompts
• Data science use cases

Please keep in mind…
• This is all open to discussion,
• We’re only touching on some aspects,
• All of this material is constantly evolving

Have you used AI?

• What Gen AI tool to do you prefer to use?
• What made you choose your preferred Gen AI tool?

1

2

3

AI in a data science context

• Not all problems are best solved with AI
• Does not replace humans, augments skills
• Data literacy, AI literacy important
• Different concerns/uses than when used for academics or writing

Responsible Use

Using responsibly

• Using Gen AI in an academic setting
https://guides.lib.montana.edu/ai/ethics

• Standards for ethical use of AI have not yet been developed, and
there is not yet a clear ethical framework to dictate ethical AI
practice.

• For students, acting in alignment with personal values, university
values, and professors' values can support ethical decision-
making and responsible use of AI in class.

4

5

6

Values-based decision making

Consider your own values. Which of your personal values relate to
AI? For example:
• Does using AI help you build on or process your own ideas?
• Do you value learning and new challenges?
• Are you concerned about receiving inaccurate or biased

information from an AI source that might affect your success in
the classroom?

• Do you value efficiency, using AI to reduce the amount of time
you spend on assignments?

Values-based decision making

Consider the university’s values.
• MSU has guidelines for academic integrity that are outlined in our

Code of Student Conduct. Although AI is a new technology, its use
should still align with expectations of academic integrity.

• The university values student learning, and it expects students to
“be responsible for the honest completion and representation of
their work, the appropriate citation of sources, and the respect
and recognition of others' academic endeavors” (Code of Student
Conduct, Section 200.00).

Values-based decision making

Consider your professors’ values.
• Talk with your professors about AI. Make sure your professor

approves the use of AI for homework and studying, and talk with
them about their expectations of students who would like to use
AI as a tool.

• This resource from the Center for Faculty Excellence provides
information about how the university and your professors may be
thinking about AI.
https://www.montana.edu/facultyexcellence/teaching-
advising/genai/

7

8

9

Values-based decision making

Once you have considered your own values, the university’s values,
and your professors’ values, you can make values-informed
decisions about when and how to use AI in your classes and build a
mutual understanding about what responsible AI use means in the
context of the classroom and student learning.

Transparency when using

If you do decide to use AI in your classes, proper citation practices
can help facilitate responsible use of AI:
• name the use or function AI provided to your work
• vet sources generated by AI
• name the tool
• where it is used in your work
• date the content was generated

Transparency when using

• When someone would feel deceived or hesitant to find out something was
done by AI

• Where’s the line between tool-use and intellectual contribution
• Hallmarks of an AI response

o Writing – repetitive phrasing, overuse of certain words ("pivotal", "delve",
"underscore"), very structured, lack of opinionated-ness, hallucinations, perfect
formatting or grammar, em dashes, "__, not __" sentence structure

o Images – human anatomy mistakes, "uncanny valley", overly smoothed or
hyperrealistic, text rendering, distorted or inconsistent details, light reflections

o Coding – lack of creative problem solving, favors certain functions, likes to
create functions, likes to create intermediate objects, very structured and
commented/documented

10

11

12

Quiz

Image 1 Image 2

https://britannicaeducation.com/blog/quiz-real-or-ai/

Quiz

Text 1
Back-to-school season isn’t just for kids —
email marketers can learn a few new tricks
too! Whether it’s getting a handle on
email authentication, diving into coding, or
sharpening your copywriting and storytelling
skills, now’s the time to up your game.
Ready to learn something new? Let’s hit the
books (or the inbox)!

Text 2
So, you learned to craft and send mass
emails in your favorite email marketing
software — is that it? What can you do
next? What to learn to earn more money,
potentially switch careers, or improve your
email marketing ROI?
We compiled a list of 8 skills that will make
you the most valuable player in a team — and
a much better email marketer. Spoiler alert:
not all of these skills are directly related to
emails, and that’s okay!

https://selzy.com/en/blog/ai-or-human-writing-quiz/

Quiz

Code 1
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(color = "blue") +

labs(title = "Engine Displacement vs
Highway MPG")

Code 2
library(ggplot2)

plot <- ggplot(data = mpg, mapping =
aes(x = displ, y = hwy)) +

geom_point(colour = "blue") +

ggtitle("Engine Displacement vs
Highway Miles Per Gallon")

print(plot)

https://crossley.github.io/cogs2020/lectures/week_3/lecture_themes.html#1

13

14

15

Data privacy and ownership

• Human subjects data privacy and consent – What data are you entering into
Gen AI? Does it have identifiers like names, birth dates, addresses, etc.? Or is
it sensitive in other ways?

• Intellectual property – Does the data you're entering into Gen AI belong
to anyone? Did someone write the words or create the images?

• Hard to know what data Gen AI is retaining
• Can't expect that Gen AI is keeping your data private
• Where will the data go after being entered into Gen AI? What are the terms of

service? Will the Gen AI company sell the data? Use it to train new models?
Use it as sample data for other users?

• Other types of sensitive data: geotagged archaeological site data,
endangered species data, copyrighted data

Frameworks

What is Generative AI?

• A type of artificial intelligence that creates new content based on
patterns learned from existing data

• Trained on massive datasets and can be prompted to generate
novel outputs that resemble the data they were trained on

• Users provide a "prompt" (a text description, an image, etc.), and
the AI generates a response

• LLMs – trained on and focus on language/writing
• Like a very advanced autocomplete
• Is like a recipe follower, not a chef

16

17

18

Types of generative AI

https://synthedia.substack.com/p/generative-ai-in-entertainment-framework

Types of generative AI
• Text-generation (ChatGPT, Gemini, Claude)
• Code-generation (Copilot, Cursor)
• Image-generation (DALL·E, Midjourney)
• Audio-generation (Suno)
• Video-generation (Sora)
• Reasoning (GPT-4o, Claude 3)
• Specific industries (BloombergGPT, Med-PaLM)
• Multimodal
• Agents

Can be hosted on a server/locally, may be able to access the internet, may have
access to your files

Terminology

• Model - The AI “brain” that generates responses
• Context window - The amount of text an AI can “remember” at

once
• Reasoning - AI’s ability to break down complex or multi-step tasks
• Tokens - Units of data processed by AI models during training and

inference
• Temperature - Controls how random the response is - lower =

more predictable, higher = more creative
• Hallucination - When the model makes up information that

sounds plausible but is false.

19

20

21

Prompting frameworks
• Anthropic, OpenAI, Google prompting guides
• Prompt engineering - crafting effective inputs (prompts) to get high-quality outputs

• In general:
• Be clear, specific
• Use structured prompts
• Break down complex tasks
• Provide context
• Control output style
• Start simple, iterate and refine
• Avoid ambiguity
• Ask for reasoning or justification

• Keep in mind:
• Response/token limits
• Capability limitations
• Hallucinations
• Overconfidence
• Misinterpretations

RISE
Role, Input, Steps, Expectation
• Ideal for multi-step code or reasoning work
• Clear incremental guidance.

Example:
• Role – You are a statistical code reviewer and optimizer.
• Input – R script that fits a GLM and prints summary.
• Steps –

o Review script for potential efficiency issues.
o Refactor for clarity and modularity.
o Add error-checking and meaningful variable names.

• Expectation – Provide cleaned-up version of the script and explanations for each
change.

TAG

Task, Action, Goal
• A clear and minimal structure
• Goal-oriented

Example:
• Task – The task is to write an R function that fits a linear regression on

provided data and returns model diagnostics.
• Action – Act as an expert data scientist in R: write the function code,

include meaningful variable names, error checks, and comments.
• Goal – Goal is to help academic researchers rapidly produce clean,

reproducible analysis so they can interpret coefficients and test
assumptions easily.

22

23

24

RTF

Role, Task, Format
• Specify who, what, and how the AI should respond
• Specifying persona and response layout

Example:
• Role – You are an experienced statistical programmer.
• Task – Create R code to perform k-fold cross-validation (k = 5) for a

random forest model predicting outcome Y.
• Format – Provide annotated code blocks, explanation of each step, and

a summary table of results.

RODES
Role, Objective, Details, Examples, Sense Check
• Adds structure with examples and a check of understanding
• High precision and style consistency

Example:
• Role – You are a senior quantitative analyst.
• Objective – Generate RMarkdown sections for exploratory data analysis of a

survey dataset: demographics, summary statistics, missingness.
• Details – Use dplyr, ggplot2, follow reproducibility best practices.
• Examples – Example: “ggplot(df, aes(x=age)) + geom_histogram()”
• Sense Check – “Do you understand the style and guidelines before

proceeding?”

Chain-of-Thought

CoT
• Encourages the model to reason step-by-step
• The AI will articulate reasoning steps and then output the code
• Complex reasoning or statistical logic
• Has strong empirical support, especially for reasoning tasks and math

problems, and improves performance significantly

Example:
• “Let’s think through this step by step: For a dataset with non-normal

residuals and heteroskedasticity, explain suitable regression
alternatives and diagnostics, then write R code to implement them.”

25

26

27

Reason + Act

ReAct
• Combines internal reasoning with performing actions (often used

in agent-like tasks).
• The AI will reason, then act (edit and recommend further work)

Example:
• “Analyze this R script: reason about whether feature selection is

appropriate, then refactor problematic segments into cleaner
functions, and suggest next analysis steps.”

Correcting bad responses
• Tell it exactly what is wrong

o "You hallucinated a reference; don’t make up citations."
o "That statistic is incorrect."

• Focus on specific corrections
• Ask for step-by-step reasoning, identify what needs modification or elaboration

o "What additional information do you need?"
o "Explain your reasoning step-by-step."

• Guide with examples
o "Here’s an example of the type of answer I want."

• Give more constraints
o "Keep it under 100 words."
o "Eliminate any repeated ideas or filler."

• Ask to keep certain sections untouched
• Specify what you did like about the response
• Refer to the previous code or responses to maintain context and avoid redundant information in your

correction prompts

What it's good at/not good at

Good
• Brainstorming
• Procedural tasks
• Drafting
• Summarizing
• Exploration
• Pattern detection

Bad
• Accurate, up-to-date info
• Interpretation
• Distinguishing good from bad
• Distinguishing real from not real
• Decision-making
• Critical thinking

28

29

30

Pitfalls
• Bias
• Privacy
• Probabilistic
• Everything is a hallucination
• Meant to seem like a human
• Overconfidence
• Reproducibility

• Model collapse
• Hallucinations being exploited
• Prompt injection
• Honey pots
• Vibe coding

Use In Data Science

Data science uses
• Code/error troubleshooting
• Boilerplate code/functions
• Code templates/skeletons to modify
• Data cleaning/wrangling steps
• Reformat, annotate, clean up code
• Convert pseudocode or descriptions into working code
• Translate code between languages
• Generate model syntax
• Look for/code to test possible overfitting problems, model assumptions, limitations, etc.
• Suggest common transformations, cleaning, or filtering steps
• Suggestions for explaining model outputs/interpretation
• Suggestions for appropriate models based on data and research questions
• Suggestions to make code reproducible and shareable

31

32

33

Translate code

Prompt:
• "Given the following code translate to R." <<Paste code>>

Demonstration:
• Translate NHANES Sample Code for Logistic Regression that

is only available in SAS-callable SUDAAN version 11
Try:

• Try prompts for some sections of code
• How to create a better prompt
• Think about follow up prompts

SAS code
**;
Linear trends analysis by age group using Logistic Regression;
**;

proc rlogist data = Rx FILETYPE = SAS DESIGN = WR ;
* Nest statement: PSUs nested within Strata accounts for the design effects*;
NEST SDMVSTRA SDMVPSU / MISSUNIT;
* Weight statement: specify appropriate weight, accounts for the unequal probability of sampling and non-response.*;
WEIGHT wtint2yr;
* Class statement: specify categorical variable(s). Reflevel statement can be included to choose reference category
for the categorical variables. By default SUDAAN uses the highest category*;
class one /nofreq;
* Subpopx statement: specify the subpopulation of interest (the inclusion criteria)*;
subpopx inAnalysis;
* Model statement: specifies dependent variable and independent variable(s) *;
MODEL anyOpioid = ageCat;
* Output statement: outputs the results to a file*;
output / betas=default filename=fig3_logistReg_betas_all replace;
* Test statement: produces statistics and P values for the Satterthwaite adjusted CHI square (satadjchi),
the Satterthwaite adjusted F (satadjf), and Satterthwaite adjusted degrees of freedom (printed by default).
If this statement is omitted, the nominal degrees of freedom,
the WALDF and the p-value corresponding to the WALDF and WALDP will be produced.*;
test waldf satadjf satadjchi;
run;

https://wwwn.cdc.gov/nchs/data/Tutorials/Code/DB369_SUDAAN.sas

Create workflow

Prompt:
• "Write R code that does the following steps:" <<Describe steps>>

Demonstration:
• Create a script that imports data, checks missing values, performs analysis,

performs checks, outputs results

Try:
• Note: we are not giving it data or a real Excel file
• Think about follow up prompts
• Discuss output and what worked as expected and what didn’t

34

35

36

Steps

1. Import data from an Excel file
2. Check for missing values
3. Perform exploratory data analysis
4. Generate a statistical model for a [specify a type of] design
5. Check model assumptions
6. Summarize the results

Knowledge required

• Need to understand how to install packages
• What packages are used?
• Are they actually popular libraries?

• The suggested code uses functions with messages and errors.
• Seems pretty complicated!

• Have to read the code carefully!
• There are some optional code chunks that are included.

• Are all variables included correctly?
• Which are fixed and which are random effects?

Create plot
Prompt:

• "Given this data, create a plot in R." <<Describe data, variables, and plot type>>
Demonstration:

• Create a plot using workshop datasets

• Can save a lot of time creating the “bones” of the plot
• You don’t need to think of the all the details
• Can explain details about the code and parameters
• Cannot run code itself
• Doesn’t know anything about your data
• Given plot might not be right for your data
• You may have to edit a lot
• It may start you off in the wrong direction (start over vs. follow-up prompts)

37

38

39

Data

BlackfootFish
• https://github.com/saramannheimer/data-science-r-

workshops/tree/master/Introduction%20to%20R/Summer%2020
25/StudentVersion/data

Surveys
• https://github.com/saramannheimer/data-science-r-

workshops/tree/master/Data%20Wrangling/Summer%202025/dat
a

Wrap Up

Discussion

• Which follow up prompts worked well?
• Which prompts didn't work well?
• What were you expecting to work well but didn't?
• What are you still curious about?
• If you and your neighbor were using different Gen AI models, were

the results different?
• Will you use AI for code?
• What concerns do you have?

40

41

42

92 SESSION 3. CODING WITH GENERATIVE AI

Session 4

Data Wrangling in R

4.1 Learning Objectives

• Describe the purpose of the dplyr and tidyr packages.
• Select certain columns in a data frame with the dplyr function select.
• Select certain rows in a data frame according to filtering conditions with the dplyr function filter

.
• Link the output of one dplyr function to the input of another function with the ‘pipe’ operator %>%.
• Add new columns to a data frame that are functions of existing columns with mutate.
• Use the split‐apply‐combine concept for producing data summaries.
• Use summarize, group_by, and count to split a data frame into groups of observations, apply

summary statistics for each group, and then combine the results.
• Describe the concept of a wide and a long table format and for which purpose those formats are

useful.
• Describe what key‐value pairs are.
• Reshape a data frame from long to wide format and back with the pivot_wider and
pivot_longer commands from the tidyr package.

• Export a data frame to a .csv file.

4.2 Data Wrangling using dplyr & tidyr Intro

Note that we’re not using “data manipulation” for this workshop, but are calling it “data wrangling.” To us, “data
manipulation” is a term that captures the event where a researcher manipulates their data (e.g., moving columns,
deleting rows, merging data files) in a non‐reproduciblemanner. Whereas, with data wrangling, all of these process
are done, but in a reproduciblemanner, such as using an R script!

Packages in R are basically sets of additional functions that let you domore stuff. The functionswe’ve been using so far,
like str() or data.frame(), come built into R; packages give you access to more of them. Before you use a package
for the first time you need to install it on your machine, and then you should import it in every subsequent R session
when you need it. You should already have installed the tidyverse package. This is an “umbrella‐package” that

93

94 SESSION 4. DATA WRANGLING IN R

installs several packages useful for data analysis which work together well such as tidyr, dplyr, ggplot2, tibble,
etc.

The tidyverse package tries to address 3 common issues that arise when doing data analysis with some of the
functions that come with R:

1. The results from a base R function sometimes depend on the type of data.
2. Using R expressions in a non‐standard way, which can be confusing for new learners.
3. Hidden arguments, having default operations that new learners are not aware of.

We have seen in our previous sessions that when building or importing a data frame, the columns that contain char‐
acters (i.e., text) are coerced (=converted) into the factor data type. We had to set stringsAsFactors to FALSE
to avoid this hidden argument to convert our data type.

This time we will use the tidyverse package to read the data and avoid having to set stringsAsFactors to FALSE

4.2.1 What are dplyr and tidyr?

The package dplyr is built to work directly with data frames, with many common tasks optimized by being written
in a compiled language (C++). An additional feature is the ability to work directly with data stored in an external
database. The benefits of doing this are that the data can be managed natively in a relational database, queries can
be conducted on that database, and only the results of the query are returned.

This addresses a common problem with R in that all operations are conducted in‐memory and thus the amount of
data you can work with is limited by available memory. The database connections essentially remove that limitation
in that you can connect to a database of many hundreds of GB, conduct queries on it directly, and pull back into R
only what you need for analysis.

The package tidyr addresses the common problem of wanting to reshape your data for plotting and use by different
R functions. Sometimes we want datasets where we have one row per measurement. Sometimes we want a data
frame where each measurement type has its own column, and rows are instead more aggregated groups ‐ like plots
or aquaria. Moving back and forth between these formats is nontrivial, and tidyr gives you tools for this and more
sophisticated data wrangling.

To learnmore about dplyr and tidyr after the workshop, youmaywant to check out this handy data transformation
with dplyr cheatsheet and this cheatsheet about tidyr.

4.2.2 Presentation of the Survey Data (Review from Data Visualization Session)

The data used in this session are a time‐series for a small mammal community in southern Arizona. This is part of a
project studying the effects of rodents and ants on the plant community that has been running for almost 40 years,
but we will focus on the years 1996 to 2002 (n=11332 observations). The rodents are sampled on a series of 24
plots, with different experimental manipulations controlling which rodents are allowed to access which plots. This
is simplified version of the full dataset that has been used in over 100 publications and was provided by the Data
Carpentries (https://datacarpentry.org/ecology‐workshop/data/). We are investigating the animal species diversity
and weights found within plots in this workshop. The dataset is stored as a comma separated value (CSV) file. Each
row holds information for a single animal, and the columns represent:

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf
https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf
https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf
https://datacarpentry.org/ecology-workshop/data/

4.2. DATA WRANGLING USING DPLYR & TIDYR INTRO 95

Column Description

record_id Unique id for the observation
month month of observation
day day of observation
year year of observation
plot_id ID of a particular plot
species_id 2‐letter code
sex sex of animal (“M”, “F”)
hindfoot_length length of the hindfoot in mm
weight weight of the animal in grams

We’ll read in our data using the read_csv() function, from the tidyverse package readr, instead of read.csv().

surveys <- read_csv("data/surveys2_subset.csv")

Rows: 11332 Columns: 9
-- Column specification --
Delimiter: ","
chr (2): species_id, sex
dbl (7): record_id, month, day, year, plot_id, hindfoot_length, weight
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

You will see the message Column specification, followed by each column name and its data type. When you
execute read_csv on a data file, it looks through the first 1000 rows of each column and guesses the data type for
each column as it reads it into R. For example, in this dataset, read_csv reads weight as col_double (a numeric
data type), and species as col_character. You have the option to specify the data type for a column manually by
using the col_types argument in read_csv.

inspect the data
glimpse(surveys)

Rows: 11,332
Columns: 9
$ record_id <dbl> 23215, 23216, 23217, 23218, 23220, 23221, 23222, 23223~
$ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ day <dbl> 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27~
$ year <dbl> 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, ~
$ plot_id <dbl> 21, 1, 17, 17, 2, 18, 1, 2, 17, 2, 1, 12, 21, 18, 17, ~
$ species_id <chr> "PF", "DM", "DM", "DM", "DM", "PF", "DM", "DO", "DM", ~
$ sex <chr> "F", "M", "M", NA, "F", "F", "M", "M", "F", "M", "F", ~
$ hindfoot_length <dbl> 16, NA, 36, 37, 36, NA, 34, 37, 39, 40, 27, 39, 21, 16~
$ weight <dbl> 7, 27, 25, NA, 47, 9, 27, 66, 49, 54, 38, NA, 16, 9, 5~

96 SESSION 4. DATA WRANGLING IN R

Preview the data (opens a spreadsheet-like interface in RStudio)
View(surveys)

A tibble: 11,332 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
7 23222 1 27 1996 1 DM M 34 27
8 23223 1 27 1996 2 DO M 37 66
9 23224 1 27 1996 17 DM F 39 49
10 23225 1 27 1996 2 DM M 40 54
i 11,322 more rows

The dataset is stored as a “tibble”. Tibbles tweak some of the behaviors of the data frame objects we introduced
previously. The data structure is very similar to a data frame. For our purposes the only differences are that:

1. In addition to displaying the data type of each column under its name, it only prints the first few rows of data
and only as many columns as fit on one screen.

2. Columns of class character are never converted into factors.

We’re going to learn some of the most common dplyr functions:

• select(): subset columns
• filter(): subset rows on conditions
• mutate(): create new columns by using information from other columns
• group_by() and summarize(): create summary statistics on grouped data
• arrange(): sort results
• count(): count discrete values

4.3 Select, Filter, and Mutate

4.3.1 Selecting Columns and Filtering Rows

To select columns of a data frame, use select(). The first argument to this function is the data frame (surveys),
and the subsequent arguments are the columns to keep.

Modify the following code to select the plot_id, species_id, and weight columns from the survey dataset:

select(surveys)

A tibble: 11,332 x 0

4.3. SELECT, FILTER, AND MUTATE 97

select(surveys, plot_id, species_id, weight)

A tibble: 11,332 x 3
plot_id species_id weight
<dbl> <chr> <dbl>
1 21 PF 7
2 1 DM 27
3 17 DM 25
4 17 DM NA
5 2 DM 47
6 18 PF 9
7 1 DM 27
8 2 DO 66
9 17 DM 49
10 2 DM 54
i 11,322 more rows

To select all columns except certain ones, put a “‐” in front of the variable to exclude it.

Modify the following code to select all columns except record_id and species_id:

select(surveys)

A tibble: 11,332 x 0

select(surveys, -record_id, -species_id)

A tibble: 11,332 x 7
month day year plot_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 1 27 1996 21 F 16 7
2 1 27 1996 1 M NA 27
3 1 27 1996 17 M 36 25
4 1 27 1996 17 <NA> 37 NA
5 1 27 1996 2 F 36 47
6 1 27 1996 18 F NA 9
7 1 27 1996 1 M 34 27
8 1 27 1996 2 M 37 66
9 1 27 1996 17 F 39 49
10 1 27 1996 2 M 40 54
i 11,322 more rows

This will select all the variables in surveys except record_id and species_id.

To choose rows based on a specific criteria, use filter():

filter(surveys, year == 1999)

A tibble: 1,064 x 9

98 SESSION 4. DATA WRANGLING IN R

record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 29024 1 16 1999 1 DM F 33 41
2 29025 1 16 1999 1 DM F 35 52
3 29026 1 16 1999 1 DM M 35 52
4 29027 1 16 1999 1 DO M 36 55
5 29028 1 16 1999 1 DO F 33 53
6 29029 1 16 1999 2 DO M 36 50
7 29030 1 16 1999 2 OT M 20 22
8 29031 1 16 1999 2 OT M 20 26
9 29032 1 16 1999 2 DO F 34 46
10 29033 1 16 1999 2 DO F 35 51
i 1,054 more rows

In the code above == keeps all rows where the year is 1999.

Other filtering options include !=, which keeps all rows that are not a certain criteria, , which means “and”, and |
which means “or”. Filter can also do < for “less than”, > for “greater than”, <= for “less than or equal to”, and >= for
“greater than or equal to”. We type these last two options the same way we would typically say them.

1. != example:

filter(surveys, year != 1999)

A tibble: 10,268 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
7 23222 1 27 1996 1 DM M 34 27
8 23223 1 27 1996 2 DO M 37 66
9 23224 1 27 1996 17 DM F 39 49
10 23225 1 27 1996 2 DM M 40 54
i 10,258 more rows

The code above keeps all rows where the year is not 1999.

2. , example:

filter(surveys, year == 1999, plot_id == 2)

A tibble: 57 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

4.3. SELECT, FILTER, AND MUTATE 99

1 29029 1 16 1999 2 DO M 36 50
2 29030 1 16 1999 2 OT M 20 22
3 29031 1 16 1999 2 OT M 20 26
4 29032 1 16 1999 2 DO F 34 46
5 29033 1 16 1999 2 DO F 35 51
6 29034 1 16 1999 2 OT F 20 25
7 29035 1 16 1999 2 PE M 20 18
8 29036 1 16 1999 2 DM M 36 44
9 29037 1 16 1999 2 DM M 37 47
10 29039 1 16 1999 2 NL F 34 162
i 47 more rows

The code above keeps all rows where the year is 1999 for plot id 2, i.e., year 1999 and plot 2. The rows meet
both of these criteria.

3. | example:

filter(surveys, year == 1999 | plot_id == 2)

A tibble: 1,743 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23220 1 27 1996 2 DM F 36 47
2 23223 1 27 1996 2 DO M 37 66
3 23225 1 27 1996 2 DM M 40 54
4 23234 1 27 1996 2 DM F 35 45
5 23237 1 27 1996 2 DM M 35 46
6 23239 1 27 1996 2 PB M 29 46
7 23242 1 27 1996 2 DO M 36 54
8 23243 1 27 1996 2 DM M 36 49
9 23257 1 27 1996 2 DM M 36 50
10 23258 1 27 1996 2 PE M 20 25
i 1,733 more rows

The code above keeps all rows where the year is 1999 or is plot id 2, i.e., year 1999 or plot 2. The rows meet
either of these criteria but not both.

4. < example:

filter(surveys, weight < 8)

A tibble: 163 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23240 1 27 1996 20 PF M 15 6
3 23250 1 27 1996 21 PF M 15 6
4 23271 1 28 1996 13 PF F 16 7

100 SESSION 4. DATA WRANGLING IN R

5 23283 1 28 1996 3 PF M 15 5
6 23317 1 28 1996 6 PF M 15 7
7 23330 1 28 1996 6 PF F 15 7
8 23334 1 28 1996 9 PF M 17 7
9 23380 2 24 1996 12 PF F 14 7
10 23436 2 25 1996 5 PF F 16 7
i 153 more rows

The code above keeps all rows where weight is less than 8.

5. > example:

filter(surveys, hindfoot_length > 30)

A tibble: 3,828 x 9
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23217 1 27 1996 17 DM M 36 25
2 23218 1 27 1996 17 DM <NA> 37 NA
3 23220 1 27 1996 2 DM F 36 47
4 23222 1 27 1996 1 DM M 34 27
5 23223 1 27 1996 2 DO M 37 66
6 23224 1 27 1996 17 DM F 39 49
7 23225 1 27 1996 2 DM M 40 54
8 23227 1 27 1996 12 DM <NA> 39 NA
9 23230 1 27 1996 17 DM M 36 51
10 23231 1 27 1996 22 DM F 36 43
i 3,818 more rows

The code above keeps all rows where hindfoot length is greater than 30.

4.3.2 Pipes

What if youwant to select and filter at the same time? There are threeways to do this: use intermediate steps, nested
functions, or pipes.

With intermediate steps, you create a temporary data frame and use that as input to the next function, like this:

surveys2 <- filter(surveys, weight < 6)
surveys_sml <- select(surveys2, species_id, sex, weight)

This is readable, but can clutter up your workspace with lots of objects that you have to name individually. With
multiple steps, that can be hard to keep track of.

You can also nest functions (i.e., one function inside of another), like this:

surveys_sml <- select(filter(surveys, weight < 6), species_id, sex, weight)

This is handy, but can be difficult to read if too many functions are nested, as R evaluates the expression from the
inside out (in this case, filtering, then selecting).

4.3. SELECT, FILTER, AND MUTATE 101

The last option are pipes. Pipes let you take the output of one function and send it directly to the next, which is useful
when you need to do many things to the same dataset. We saw pipes in the data visualization session when piping
data into ggplot() or summarizing data before visualizing.

surveys %>%
filter(weight < 6) %>%
select(species_id, sex, weight)

A tibble: 7 x 3
species_id sex weight
<chr> <chr> <dbl>
1 PF M 5
2 PF M 5
3 PF F 5
4 PF F 5
5 PF F 5
6 PP M 4
7 PF F 5

As a refresher, in the above code, we use the pipe to send the surveys dataset first through filter() to keep rows
where weight is less than 6, then through select() to keep only the species_id, sex, and weight columns. Since
%>% takes the object on its left and passes it as the first argument to the function on its right, we don’t need to explicitly
include the data frame as an argument to the filter() and select() functions any more.

Some may find it helpful to read the pipe like the word “then”. For instance, in the above example, we took the data
frame surveys, then we filtered for rows with weight < 6, then we selected columns species_id, sex, and
weight. The dplyr functions by themselves are somewhat simple, but by combining them into linear workflows
with the pipe, we can accomplish more complex wrangling of data frames.

If we want to create a new object with this smaller version of the data, we can assign it a new name:

surveys_sml <- surveys %>%
filter(weight < 6) %>%
select(species_id, sex, weight)

surveys_sml

A tibble: 7 x 3
species_id sex weight
<chr> <chr> <dbl>
1 PF M 5
2 PF M 5
3 PF F 5
4 PF F 5
5 PF F 5
6 PP M 4
7 PF F 5

102 SESSION 4. DATA WRANGLING IN R

Note that the final data frame is the leftmost part of this expression.

4.3.2.1 Challenge 1

Using pipes, subset the surveys data to include:

• animals collected on or after 2001 and
• retain only the columns year, sex, and weight.

Pipes Challenge: Using pipes, subset the data to include animals collected
on or after 2001, and retain the columns `year`, `sex`, and `weight.`

4.3.3 Mutate

Frequently you’ll want to create new columns based on the values in existing columns, for example to do unit conver‐
sions, or to find the ratio of values in two columns. For this we’ll use mutate().

To create a new column of weight in kg from weight in grams:

surveys %>%
mutate(weight_kg = weight/1000)

A tibble: 11,332 x 10
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
7 23222 1 27 1996 1 DM M 34 27
8 23223 1 27 1996 2 DO M 37 66
9 23224 1 27 1996 17 DM F 39 49
10 23225 1 27 1996 2 DM M 40 54
i 11,322 more rows
i 1 more variable: weight_kg <dbl>

You can also create a second new column based on the first new column within the same call of mutate():

surveys %>%
mutate(weight_kg = weight/1000, weight_lb = weight_kg * 2.2)

A tibble: 11,332 x 11
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27

4.3. SELECT, FILTER, AND MUTATE 103

3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
7 23222 1 27 1996 1 DM M 34 27
8 23223 1 27 1996 2 DO M 37 66
9 23224 1 27 1996 17 DM F 39 49
10 23225 1 27 1996 2 DM M 40 54
i 11,322 more rows
i 2 more variables: weight_kg <dbl>, weight_lb <dbl>

If this runs off your screen and you just want to see the first few rows, you can use a pipe to view the head() of the
data. (Pipes work with non‐dplyr functions, too, as long as the dplyr or magrittr package is loaded).

surveys %>%
mutate(weight_kg = weight/1000) %>%
head()

A tibble: 6 x 10
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
i 1 more variable: weight_kg <dbl>

The first few rows of the dataset contain some missing observations (NAs). If we wanted to remove any observations
where there were missing values on weight, we could insert a filter() in the chain:

surveys %>%
filter(!is.na(weight)) %>%
mutate(weight_kg = weight/1000) %>%
head()

A tibble: 6 x 10
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23220 1 27 1996 2 DM F 36 47
5 23221 1 27 1996 18 PF F NA 9
6 23222 1 27 1996 1 DM M 34 27
i 1 more variable: weight_kg <dbl>

104 SESSION 4. DATA WRANGLING IN R

is.na() is a function that determines whether something is an NA. The ! symbol negates the result, so in the code
above we’re asking for every row where weight is not an NA.

4.3.3.1 Challenge 2

Create a new data frame from the surveys data named surveys_hindfoot_cm that meets the follow‐
ing criteria:

• contains only the species_id column and
• a new column called hindfoot_cm containing the hindfoot_length values converted to centime‐

ters (they are in mm).
• Make sure that you only retain values in the hindfoot_cm column that are not missing (not NA) and

are less than 3 cm.
• Then print out the head() of the new data frame.

Hint: think about how the commands should be ordered to produce this data frame!

Mutate Challenge: Create a new data frame from the `surveys` data named
`surveys_hindfoot_cm` that meets the following criteria: * contains only the
`species_id` column and * a new column called `hindfoot_cm` containing the
`hindfoot_length` values converted to centimeters. * Make sure that you
only retain values in the hindfoot_cm column that are not missing (not NA)
and are less than 3 cm. Then print out the head of the new data frame.

Hint: think about how the commands should be ordered to produce this data
frame!

4.3.4 Using lubridate for Dates

Date‐time data can be frustrating to work with in R, since R commands for date‐times are generally un‐intuitive and
change depending on the type of date‐time object being used. Moreover, the methods we use with date‐times must
be robust to time zones, leap days, daylight savings times, and other time related quirks, and R lacks these capabilities
in some situations. The lubridate package makes it easier to do the things R does with date‐times and possible to
do things that base R does not.

Lubridate has functions that handle easy parsing of times, such as:

• ymd()
• dmy()
• mdy()

library(lubridate)
today() # Today's date

[1] "2025-08-05"

now() # Today's date, with time and timezone!

[1] "2025-08-05 15:19:12 MDT"

4.3. SELECT, FILTER, AND MUTATE 105

surveys_w_days <- surveys %>%
mutate(date = ymd(paste(year,

month,
day,
sep = "-")

),
day_of_week = wday(date, label = TRUE)
Creating a day of the week variable
label = TRUE prints the name, not the level!
)

Warning: There was 1 warning in `mutate()`.
i In argument: `date = ymd(paste(year, month, day, sep = "-"))`.
Caused by warning:
! 125 failed to parse.

surveys_w_days %>%
head()

A tibble: 6 x 11
record_id month day year plot_id species_id sex hindfoot_length weight
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
1 23215 1 27 1996 21 PF F 16 7
2 23216 1 27 1996 1 DM M NA 27
3 23217 1 27 1996 17 DM M 36 25
4 23218 1 27 1996 17 DM <NA> 37 NA
5 23220 1 27 1996 2 DM F 36 47
6 23221 1 27 1996 18 PF F NA 9
i 2 more variables: date <date>, day_of_week <ord>

surveys_w_days %>%
select(day_of_week) %>%
summary()

day_of_week
Sun :4212
Sat :4202
Wed : 924
Mon : 572
Thu : 525
(Other): 772
NA's : 125

surveys_w_days %>%
filter(is.na(date) == TRUE) %>%
select(month, day) %>%

106 SESSION 4. DATA WRANGLING IN R

table()

day
month 31
4 70
9 55

4.3.4.1 Challenge 3

• What dates were unable to be converted?
• Explore the results and objects in the previous sandbox to figure out why that happened.

We can pull off components of dates using a large array of lubridate functions, such as:

• year()
• month()
• mday()
• hour()
• minute()
• second()

For additional information about lubridate visit the lubridate reference website or look over the lubridate
cheatsheet.

4.4 Character Wrangling

If we inspect the day of week variable we created in the last code chunk, we’ll see that it is an ordered (<ord>) factor.

4.4.1 Challenge 4

What are the names of the days of the week taken from the dates?

4.4.2 The case_when() Function

Wenotice that the labels for the days of theweek are not necessarily whatwewould like to have for a graphical display
of our data. To reword the names of the days of the week, we can use the case_when() function from dplyr.

The case_when() function can be thought of as a “generalized form for multiple if_else() statements.” We talked
about ifelse() statements in the Intermediate R workshop, but let’s break them down here to review.

For case_when() the inputs are sequences of two‐sided formulas. The left hand side finds the values that match the
case and the right hand side says what should be done with these matches.

Let’s look at this in action!

surveys_days_full <- surveys_w_days %>%
mutate(day_of_week = case_when(day_of_week == "Mon" ~ "Monday", day_of_week ==

"Tue" ~ "Tuesday", day_of_week == "Wed" ~ "Wednesday", day_of_week == "Thu" ~

https://lubridate.tidyverse.org/
https://raw.githubusercontent.com/rstudio/cheatsheets/main/lubridate.pdf
https://raw.githubusercontent.com/rstudio/cheatsheets/main/lubridate.pdf

4.4. CHARACTER WRANGLING 107

"Thursday", day_of_week == "Fri" ~ "Friday", day_of_week == "Sat" ~ "Saturday",
day_of_week == "Sun" ~ "Sunday"))

glimpse(surveys_days_full$day_of_week)

chr [1:11332] "Saturday" "Saturday" "Saturday" "Saturday" "Saturday" ...

4.4.3 NOTE:

If you only want to recode a couple levels of a variable, you can still use case_when()without specifying
the behavior for ALL levels. See the example below:

Create a variable weekday that takes on a value of 0 for Saturday/Sunday and
1 otherwise and recodes Friday to missing
surveys_weekday <- surveys_w_days %>%

mutate(weekday = case_when(day_of_week == "Sat" ~ 0, day_of_week == "Sun" ~ 0,
day_of_week == "Fri" ~ as.numeric(NA), TRUE ~ 1))

surveys_weekday %>%
count(weekday)

A tibble: 3 x 2
weekday n
<dbl> <int>
1 0 8414
2 1 2589
3 NA 329

But, perhaps these days are not in the order that we want them to be in.

4.4.3.1 Challenge 5

What order did R put the days of the week in? What data type is day_of_week now?

There are small differences between character data types and factor data types. Typically, R uses factors to handle cat‐
egorical variables, variables that have a fixed and known set of possible values. Factors are also helpful for reordering
character vectors to improve display. However, factors are often difficult to work with. Enter the forcats package,
whose goal is to provide a suite of tools that solve common problems with factors, including changing the order of
levels or the values.

The order of the levels R chose may not be what we wanted, but we can reorder them using the fct_relevel()
function from the forcats package (the forcats cheatsheet link. The function takes three arguments:

1. the data
2. the factor to be reordered
3. the order of the new levels separated by commas

This process looks like this:

https://raw.githubusercontent.com/rstudio/cheatsheets/main/factors.pdf

108 SESSION 4. DATA WRANGLING IN R

surveys_edited <- surveys_days_full %>%
mutate(day_of_week = fct_relevel(day_of_week, "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "Sunday"))
glimpse(surveys_edited$day_of_week)

Factor w/ 7 levels "Monday","Tuesday",..: 6 6 6 6 6 6 6 6 6 6 ...

4.4.3.2 Challenge 6

Verify that R put the days in the order that you specified!

4.5 Split‐Apply‐Combine Data Analysis

Many data analysis tasks can be approached using the split‐apply‐combine paradigm: split the data into groups, apply
some analysis to each group, and then combine the results. dplyr makes this very easy through the use of the
group_by() function.

4.5.1 The summarize() Function

group_by() is often used together with summarize(), which collapses each group into a single‐row summary of
that group. group_by() takes as arguments the column names that contain the categorical variables for which you
want to calculate the summary statistics. So to compute the mean weight by sex:

surveys_edited %>%
group_by(sex) %>%
summarize(mean_weight = mean(weight, na.rm = TRUE))

A tibble: 3 x 2
sex mean_weight
<chr> <dbl>
1 F 33.1
2 M 33.3
3 <NA> NaN

One of the advantages of tbl_df over data frame is that is provides more compact output, although the current
format of these materials makes that hard to see.

You can also group by multiple columns:

surveys_edited %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm = TRUE))

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 25 x 3
Groups: sex [3]

4.5. SPLIT‐APPLY‐COMBINE DATA ANALYSIS 109

sex species_id mean_weight
<chr> <chr> <dbl>
1 F DM 43.6
2 F DO 49.4
3 F NL 168.
4 F OL 32.1
5 F OT 25.3
6 F PB 30.2
7 F PE 22.5
8 F PF 8.44
9 F PM 22.0
10 F PP 17.5
i 15 more rows

When grouping both by sex and species_id, the last row is for animals that escaped before their sex and body
weights could be determined. You may notice that the last column does not contain NA but NaN (which refers to “Not
a Number”). To avoid this, we can remove the missing values for weight before we attempt to calculate the summary
statistics on weight. Because the missing values are removed first, we can omit na.rm = TRUE when computing the
mean:

surveys_edited %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight))

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 24 x 3
Groups: sex [2]
sex species_id mean_weight
<chr> <chr> <dbl>
1 F DM 43.6
2 F DO 49.4
3 F NL 168.
4 F OL 32.1
5 F OT 25.3
6 F PB 30.2
7 F PE 22.5
8 F PF 8.44
9 F PM 22.0
10 F PP 17.5
i 14 more rows

If you want to display more data, you can use the print() function at the end of your chain with the argument n
specifying the number of rows to display:

110 SESSION 4. DATA WRANGLING IN R

surveys_edited %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight)) %>%
print(n = 15)

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 24 x 3
Groups: sex [2]
sex species_id mean_weight
<chr> <chr> <dbl>
1 F DM 43.6
2 F DO 49.4
3 F NL 168.
4 F OL 32.1
5 F OT 25.3
6 F PB 30.2
7 F PE 22.5
8 F PF 8.44
9 F PM 22.0
10 F PP 17.5
11 F RM 11.9
12 F SH 77.4
13 M DM 45.1
14 M DO 48.5
15 M NL 167.
i 9 more rows

Once the data are grouped, you can also summarize multiple variables at the same time (and not necessarily on the
same variable). For instance, we could add a column indicating the minimum weight for each species for each sex:

surveys_edited %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight), min_weight = min(weight))

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 24 x 4
Groups: sex [2]
sex species_id mean_weight min_weight
<chr> <chr> <dbl> <dbl>
1 F DM 43.6 19

4.5. SPLIT‐APPLY‐COMBINE DATA ANALYSIS 111

2 F DO 49.4 22
3 F NL 168. 63
4 F OL 32.1 21
5 F OT 25.3 11
6 F PB 30.2 12
7 F PE 22.5 11
8 F PF 8.44 5
9 F PM 22.0 9
10 F PP 17.5 8
i 14 more rows

It is sometimes useful to rearrange the result of a query to inspect the values. For instance, we can sort on
min_weight to put the lighter species first:

surveys_edited %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight), min_weight = min(weight)) %>%
arrange(min_weight)

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 24 x 4
Groups: sex [2]
sex species_id mean_weight min_weight
<chr> <chr> <dbl> <dbl>
1 M PP 17.1 4
2 F PF 8.44 5
3 M PF 8.39 5
4 F RM 11.9 7
5 M PM 20.3 7
6 M RM 10.8 7
7 F PP 17.5 8
8 M PE 20.3 8
9 F PM 22.0 9
10 F OT 25.3 11
i 14 more rows

To sort in descending order, we need to add the desc() function. If we want to sort the results by decreasing order
of mean weight:

surveys_edited %>%
filter(!is.na(weight)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight), min_weight = min(weight)) %>%
arrange(desc(mean_weight))

112 SESSION 4. DATA WRANGLING IN R

`summarise()` has grouped output by 'sex'. You can override using the
`.groups` argument.

A tibble: 24 x 4
Groups: sex [2]
sex species_id mean_weight min_weight
<chr> <chr> <dbl> <dbl>
1 F NL 168. 63
2 M NL 167. 62
3 F SH 77.4 38
4 M SH 59.1 28
5 F DO 49.4 22
6 M DO 48.5 23
7 M DM 45.1 18
8 F DM 43.6 19
9 M PB 33.8 13
10 F OL 32.1 21
i 14 more rows

4.5.1.1 Challenge 7 Part 1

Use group_by() and summarize() to find the mean, min, and max hindfoot length for each species
(using species_id). Also add the number of observations. (HINT: see ?n.)

4.5.1.2 Challenge 7 Part 2

What was the heaviest animal measured in each year?

Return the columns year and weight.

4.5.2 Counting

When working with data, we often want to know the number of observations found for each factor or combination
of factors. For this task, dplyr provides count(). For example, if we wanted to count the number of rows of data
for each sex, we would do:

surveys_edited %>%
count(sex)

A tibble: 3 x 2
sex n
<chr> <int>
1 F 5451
2 M 5879
3 <NA> 2

4.5. SPLIT‐APPLY‐COMBINE DATA ANALYSIS 113

The count() function is shorthand for something we’ve already seen: grouping by a variable, and summarizing it by
counting the number of observations in that group. In other words, surveys %>% count() is equivalent to:

surveys_edited %>%
group_by(sex) %>%
summarize(count = n())

A tibble: 3 x 2
sex count
<chr> <int>
1 F 5451
2 M 5879
3 <NA> 2

For convenience, count() provides the sort argument:

surveys_edited %>%
count(sex, sort = TRUE)

A tibble: 3 x 2
sex n
<chr> <int>
1 M 5879
2 F 5451
3 <NA> 2

The previous example shows the use of count() to count the number of rows/observations for one factor (i.e., sex).
If wewanted to count the combination of factors, such as sex and species, wewould specify the first and the second
factor as the arguments of count():

surveys_edited %>%
count(sex, species_id)

A tibble: 25 x 3
sex species_id n
<chr> <chr> <int>
1 F DM 1111
2 F DO 389
3 F NL 134
4 F OL 10
5 F OT 507
6 F PB 1610
7 F PE 102
8 F PF 272
9 F PM 208
10 F PP 973
i 15 more rows

114 SESSION 4. DATA WRANGLING IN R

With the above code, we can proceed with arrange() to sort the table according to a number of criteria so that we
have a better way to compare groups. For instance, we might want to arrange the table above in (i) an alphabetical
order of the levels of the species and (ii) in descending order of the count:

surveys_edited %>%
count(sex, species_id) %>%
arrange(species_id, desc(n))

A tibble: 25 x 3
sex species_id n
<chr> <chr> <int>
1 M DM 1558
2 F DM 1111
3 <NA> DM 2
4 M DO 611
5 F DO 389
6 F NL 134
7 M NL 72
8 M OL 18
9 F OL 10
10 M OT 523
i 15 more rows

From the table above, wemay learn that, for instance, there are 72 observations of the albigula species (species_id
= “NL”) for males.

4.5.2.1 Challenge 8

How many animals were caught in each plot (plot_id) surveyed?

Count Challenge: How many animals were caught in each `plot_type` surveyed?

4.6 Relational Data with dplyr

It is rare that data analyses, especially with longitudinal measurements, involve only a single table of data. More
typically, you have multiple tables of data, describing different aspects of your study. When you embark on analyzing
your data, these different data tables need to be combined. Collectively, multiple tables of data are called relational
data, as the data tables are not independent, rather they relate to each other.

Relations are defined between a pair of data tables. There are three families of joining operations: mutating joins,
filtering joins, and set operations. Today we will focus on mutating joins.

The survey data have two other data tables they are related to: plots and species. Load in these data and inspect
them to get an idea of how they relate to the survey data we’ve been working with.

plots <- read_csv("data/plots.csv")

Rows: 24 Columns: 2

4.6. RELATIONAL DATA WITH DPLYR 115

-- Column specification --
Delimiter: ","
chr (1): plot_type
dbl (1): plot_id
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(plots)

A tibble: 6 x 2
plot_id plot_type
<dbl> <chr>
1 1 Spectab exclosure
2 2 Control
3 3 Long-term Krat Exclosure
4 4 Control
5 5 Rodent Exclosure
6 6 Short-term Krat Exclosure

Table 4.2: Columns in the plots.csv file:

Column Description

plot_id ID of a particular plot
plot_type type of plot

species <- read_csv("data/species.csv")

Rows: 54 Columns: 4
-- Column specification --
Delimiter: ","
chr (4): species_id, genus, species, taxa
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(species)

A tibble: 6 x 4
species_id genus species taxa
<chr> <chr> <chr> <chr>
1 AB Amphispiza bilineata Bird
2 AH Ammospermophilus harrisi Rodent
3 AS Ammodramus savannarum Bird
4 BA Baiomys taylori Rodent

116 SESSION 4. DATA WRANGLING IN R

5 CB Campylorhynchus brunneicapillus Bird
6 CM Calamospiza melanocorys Bird

Table 4.3: Columns in the species.csv file:

Column Description

species_id 2‐letter code
genus genus of animal
species species of animal
taxon e.g. Rodent, Reptile, Bird, Rabbit

The variables used to connect a pair of tables are called keys. A key is a variable that uniquely identifies an observation
in that table. What are the keys for each of the three data tables? (hint: What combination of variables uniquely
identifies a row in that data frame?)

4.6.0.1 Quiz:

1. What is the key for the plots data table?

a) plot_id
b) plot_type

2. What is the key for the species data table?

a) species
b) species_id
c) genus
d) taxa

3. What is the key for the surveys data table?

a) species_id
b) plot_id
c) record_id
d) month
e) day
f) year
g) sex
h) hindfoot_length
i) weight

There are two types of keys:

• A primary key uniquely identifies an observation in its own table.

• A foreign key uniquely identifies an observation in another table.

4.6. RELATIONAL DATA WITH DPLYR 117

A primary key and the corresponding foreign key form a relation between the two data tables. These relations are
typically many‐to‐one, though they can be 1‐to‐1. For example, there are many rodents captured that are of one
species_id, hence a many‐to‐one relationship.

For me, the easiest way to think about the relationships between the different data tables is to draw a picture:

Figure 4.1: Wickham, H. and Grolemund, G. (2017) R for Data Science. Sebastopol, California: O’Reilly.

4.6.1 Joining Relational Data

The tool that we will be using is called a mutating join. A mutating join is how we can combine variables from two
tables. The join matches observations by their keys, and then copies variables from one table to the other. Similar to
mutate() these join functions add variables to the right of the existing data frame, hence their name. There are two
types of mutating joins, the inner join and the outer join.

4.6.2 Inner Join

The simplest join is an inner join, which creates a pair of observations whenever their keys are equal. This join will
output a new data frame that contains the key, the values of x, and the values of y. Importantly, this join deletes
observations that do not have a match.

118 SESSION 4. DATA WRANGLING IN R

Figure 4.2: Wickham, H. and Grolemund, G. (2017) R for Data Science. Sebastopol, California: O’Reilly.

4.6.3 Outer Join

While an inner join only keeps observations with keys that appear in both tables, an outer join keeps observations
that appear in at least one of the data tables. When joining x with y, there are three types of outer join:

• A left join keeps all of the observations in x.

• A right join keeps all of the observations in y.

• A full join keeps all of the observations in both x and y.

Figure 4.3: Wickham, H. and Grolemund, G. (2017) R for Data Science. Sebastopol, California: O’Reilly.

The left join is the most common, as you typically have a data frame (x) that you wish to add additional information
to (the contents of y). This join will preserve the contents of x, even if there is not a match for them in y.

4.6.4 Joining surveys_edited Data

To join the surveys_edited data with the plots data and species data, we will need two join statements. As we
are interested in adding this information to our already existing data frame, surveys_edited, a left join is the most

4.7. RESHAPING DATA 119

appropriate.

combined <- surveys_edited %>%
left_join(plots, by = "plot_id") %>% # adding the type of plot
left_join(species, by = "species_id") # adding the genus, species, and taxa

glimpse(combined)

Rows: 11,332
Columns: 15
$ record_id <dbl> 23215, 23216, 23217, 23218, 23220, 23221, 23222, 23223~
$ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ day <dbl> 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27~
$ year <dbl> 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, ~
$ plot_id <dbl> 21, 1, 17, 17, 2, 18, 1, 2, 17, 2, 1, 12, 21, 18, 17, ~
$ species_id <chr> "PF", "DM", "DM", "DM", "DM", "PF", "DM", "DO", "DM", ~
$ sex <chr> "F", "M", "M", NA, "F", "F", "M", "M", "F", "M", "F", ~
$ hindfoot_length <dbl> 16, NA, 36, 37, 36, NA, 34, 37, 39, 40, 27, 39, 21, 16~
$ weight <dbl> 7, 27, 25, NA, 47, 9, 27, 66, 49, 54, 38, NA, 16, 9, 5~
$ date <date> 1996-01-27, 1996-01-27, 1996-01-27, 1996-01-27, 1996-~
$ day_of_week <fct> Saturday, Saturday, Saturday, Saturday, Saturday, Satu~
$ plot_type <chr> "Long-term Krat Exclosure", "Spectab exclosure", "Cont~
$ genus <chr> "Perognathus", "Dipodomys", "Dipodomys", "Dipodomys", ~
$ species <chr> "flavus", "merriami", "merriami", "merriami", "merriam~
$ taxa <chr> "Rodent", "Rodent", "Rodent", "Rodent", "Rodent", "Rod~

If the keys being used have different names in the data tables, you can use by=c("a" = "b") where a is the key
name in the x dataset and b is the name in the y dataset. Or you could mutate the variable names so that they do
match prior to using left_join.

4.7 Reshaping Data

Data Carpentry’s spreadsheet lesson (link), discusses how to structure our data leading to the four rules defining a
tidy dataset:

1. Each variable has its own column
2. Each observation has its own row
3. Each value must have its own cell
4. Each type of observational unit forms a table

Here we examine the fourth rule: Each type of observational unit forms a table.

In surveys_edited , the rows of surveys_edited contain the values of variables associated with each record (the
unit), values such as the weight or sex of each animal associated with each record. What if instead of comparing
records, we wanted to compare the different mean weights of each genus between plots? (Ignoring plot_type for
simplicity).

We’d need to create a new table where each row (the unit) is comprised of values of variables associated with each

https://datacarpentry.org/spreadsheet-ecology-lesson/01-format-data/

120 SESSION 4. DATA WRANGLING IN R

Figure 4.4: https://datacarpentry.org/spreadsheet‐ecology‐lesson/01‐format‐data/

plot. In practical terms this means the values in genus would become the names of column variables and the cells
would contain the values of the mean weight observed on each plot.

Having created a new table, it is therefore straightforward to explore the relationship between the weight of different
genera within, and between, the plots. The key point here is that we are still following a tidy data structure, but we
have reshaped the data according to the observations of interest: average genus weight per plot instead of recordings
per date.

The opposite transformation would be to transform column names into values of a variable.

We can do both these of transformations with two tidyr functions, pivot_longer() and pivot_wider().

4.7.1 Pivoting to a Wider Table

pivot_wider() takes three principal arguments:

1. the data

2. the column whose values will become new column names.

3. the column whose values will fill the new columns.

Further arguments include fill which, if set, fills in missing values with the value provided.

Let’s use pivot_wider() to transform surveys to find the mean weight of each genus in each plot over the entire
survey period. We use filter(), group_by() and summarize() to filter our observations and variables of interest,
and create a new variable for the mean_weight. We use the pipe as before too.

surveys_gw <- combined %>%
filter(!is.na(weight)) %>%
group_by(plot_id, genus) %>%
summarize(mean_weight = mean(weight))

`summarise()` has grouped output by 'plot_id'. You can override using the
`.groups` argument.

https://datacarpentry.org/spreadsheet-ecology-lesson/01-format-data/

4.7. RESHAPING DATA 121

Figure 4.5: https://datacarpentry.org/spreadsheet‐ecology‐lesson/01‐format‐data/

glimpse(surveys_gw)

Rows: 165
Columns: 3
Groups: plot_id [24]
$ plot_id <dbl> 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3~
$ genus <chr> "Chaetodipus", "Dipodomys", "Neotoma", "Onychomys", "Perog~
$ mean_weight <dbl> 23.482625, 46.957377, 178.750000, 24.482143, 7.384615, 21.~

surveys_gw %>%
head()

A tibble: 6 x 3
Groups: plot_id [1]
plot_id genus mean_weight
<dbl> <chr> <dbl>
1 1 Chaetodipus 23.5
2 1 Dipodomys 47.0
3 1 Neotoma 179.
4 1 Onychomys 24.5
5 1 Perognathus 7.38
6 1 Peromyscus 21.4

This yields surveys_gw where the observations for each plot are spread across multiple rows, 164 observations of 3
variables.

Using pivot_wider() to pivot on genuswith values from mean_weight this becomes 24 observations of 9 variables,

https://datacarpentry.org/spreadsheet-ecology-lesson/01-format-data/

122 SESSION 4. DATA WRANGLING IN R

one row for each plot. We again use pipes:

surveys_wide <- surveys_gw %>%
pivot_wider(names_from = genus, values_from = mean_weight)

glimpse(surveys_wide)

Rows: 24
Columns: 9
Groups: plot_id [24]
$ plot_id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
$ Chaetodipus <dbl> 23.48263, 26.63729, 28.27273, 24.04444, 18.71429, 27.2~
$ Dipodomys <dbl> 46.95738, 46.38756, 48.60748, 45.64417, 47.97059, 46.0~
$ Neotoma <dbl> 178.7500, 169.1475, 171.0000, NA, 147.0000, 191.5000, ~
$ Onychomys <dbl> 24.48214, 25.45238, 24.81159, 24.43478, 25.42308, 24.7~
$ Perognathus <dbl> 7.384615, 8.000000, 7.875000, 8.457143, 8.809524, 7.74~
$ Peromyscus <dbl> 21.42857, 22.53571, 21.00000, 22.60000, 20.52174, 21.9~
$ Reithrodontomys <dbl> 14.00000, 11.36364, 12.28571, 10.00000, 11.46154, 10.8~
$ Sigmodon <dbl> NA, 69.0, NA, 82.0, NA, 73.0, NA, NA, 77.0, NA, NA, 65~

surveys_wide %>%
head()

A tibble: 6 x 9
Groups: plot_id [6]
plot_id Chaetodipus Dipodomys Neotoma Onychomys Perognathus Peromyscus
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 23.5 47.0 179. 24.5 7.38 21.4
2 2 26.6 46.4 169. 25.5 8 22.5
3 3 28.3 48.6 171 24.8 7.88 21
4 4 24.0 45.6 NA 24.4 8.46 22.6
5 5 18.7 48.0 147 25.4 8.81 20.5
6 6 27.2 46 192. 24.8 7.74 21.9
i 2 more variables: Reithrodontomys <dbl>, Sigmodon <dbl>

4.7.1.1 Challenge 9

Pivot the combined data frame to a wide format, with year as columns, plot_id as rows, and the
number of genera per plot as the values. You will need to summarize before reshaping, and use the
function n_distinct() to get the number of unique genera within a particular chunk of data. It’s a
powerful function! See ?n_distinct or go to https://dplyr.tidyverse.org/reference/n_distinct.html for
more information.

Save the wide dataset as an object, with an intuitive name! Then use glimpse to take a look at the
structure.

https://dplyr.tidyverse.org/reference/n_distinct.html

4.7. RESHAPING DATA 123

Make a wide data frame by pivoting on year. Fill the values in these
columns with the number of genera per plot. Make sure to save the new
dataset with an intuitive name!

4.7.2 Pivoting to a Longer Table

The opposing situation could occur if we had been providedwith data in the form of surveys_wide, where the genus
names are column names, but we wish to treat them as values of a genus variable instead. This task is extremely
common in longitudinal data where the columns are the measurement events over time on the same variable and
the rows are for the locations or subjects and we want to align all the responses in one long vector for plotting (e.g.,
ggplot) or analyses.

In this situation we are gathering the column names and turning them into a pair of new variables. One variable
represents the column names as values, and the other variable contains the values previously associated with the
column names.

pivot_longer() takes four principal arguments:

1. the data
2. the columns we wish to pivot into a single column
3. the name of the new column to create to store the names of each selected column
4. the name of the new column to create to store the data filled in each cell

Figure 4.6: https://datacarpentry.org/spreadsheet‐ecology‐lesson/01‐format‐data/

To recreate surveys_gw from surveys_wide we would create a key called genus and value called mean_weight
and use all columns except plot_id for the key variable. Here we drop the plot_id column with a minus sign.

https://datacarpentry.org/spreadsheet-ecology-lesson/01-format-data/

124 SESSION 4. DATA WRANGLING IN R

surveys_long <- surveys_wide %>%
pivot_longer(cols = -plot_id, names_to = "genus", values_to = "mean_weight")

glimpse(surveys_long)

Rows: 192
Columns: 3
Groups: plot_id [24]
$ plot_id <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3~
$ genus <chr> "Chaetodipus", "Dipodomys", "Neotoma", "Onychomys", "Perog~
$ mean_weight <dbl> 23.482625, 46.957377, 178.750000, 24.482143, 7.384615, 21.~

Note that now the NA genera are included in the re‐gathered format. Pivoting your data to a wide format and then
pivoting to a long format can be a useful way to balance out a dataset so every replicate has the same composition
and you can see where you could have obtained observations.

We could also have used a specification for what columns to include. This can be useful if you have a large number
of identifying columns, and it’s easier to specify what to gather than what to leave alone. And if the columns are in a
row, we don’t even need to list them all out ‐ just use the : operator!

surveys_wide %>%
pivot_longer(cols = Chaetodipus:Sigmodon, names_to = "genus", values_to = "mean_weight") %>%
head()

A tibble: 6 x 3
Groups: plot_id [1]
plot_id genus mean_weight
<dbl> <chr> <dbl>
1 1 Chaetodipus 23.5
2 1 Dipodomys 47.0
3 1 Neotoma 179.
4 1 Onychomys 24.5
5 1 Perognathus 7.38
6 1 Peromyscus 21.4

4.7.2.1 Challenge 10

Take the surveys_wide_genera dataset and use pivot_longer() to pivot it to the long format it was
in before, so that each row is a unique plot_id by year combination.

HINT: The year column names look like numbers so you need to use back ticks (“ ‘”) to indicate they are
variables instead of numbers.

Now take the surveys_wide_genera dataset, and make it long again, by
(re)pivoting on the year columns.

names(surveys_wide_genera)

4.8. EXPORTING DATA 125

Error: object 'surveys_wide_genera' not found

4.7.2.2 Challenge 11 Part 1

The combined dataset has two measurement columns: hindfoot_length and weight. This makes it
difficult to do things like look at the relationship between mean values of each measurement per year in
different plot types.

Let’s walk through a common solution for this type of problem.

First, usepivot_longer() to create a dataset calledcombined_longerwherewehave a names column
called measurement and a values column that takes on the value of either hindfoot_length or weight.

HINT: You’ll need to specify which columns to pivot into longer format!

Use pivot_long() to create an even longer dataset. Create a column called
measurement, containing the hindfoot and weight columns And a value column
that takes on the value of either of these measurements Hint: You'll need to
specify which columns are being used to pivot!

4.7.2.3 Challenge 11 Part 2

With this new dataset, combined_longer, calculate the average of each measurement in each year for
each different plot_type.

Then pivot these summaries into a dataset with a column for hindfoot_length and weight.

HINT: This sounds like you want to pivot the data to be a wider format!

With this new very long dataset, calculate the average of each measurement
in each year for each different plot_type.

Now pivot these summaries into a wide dataset. With a columns for
hindfoot_length and weight. Filled with the summary values you calculated.

4.8 Exporting Data

Now that you have learned how to use dplyr to extract information from or summarize your raw data, youmay want
to export these new datasets to share them with your collaborators or for archival.

Similar to the read_csv() function used for reading CSV files into R, there is a write_csv() function that generates
CSV files from data frames.

Before using write_csv(), it is good to create a new folder, data, in our working directory that will store the gener‐
ated datasets. It is best to avoid writing generated datasets in the same directory as our raw data as that may create
confusion later about which dataset was the source and which was the “wrangled” version. So it is good practice to
keep them separate. The data_raw folder should only contain the raw, unaltered data, and should be left alone to

126 SESSION 4. DATA WRANGLING IN R

make sure we don’t delete or modify it. In contrast, our script will generate the contents of the data directory, so
even if the files it contains are deleted, we can always re‐generate them.

if (!dir.exists("data")) {
dir.create("data")

}

For future use, we might want to prepare a cleaned up version of the dataset that doesn’t include any missing data.

Let’s start by removing observations of animals for which weight and hindfoot_length are missing, or the sex has
not been determined:

surveys_complete <- surveys_edited %>%
filter(!is.na(weight), # remove missing weight

!is.na(hindfoot_length), # remove missing hindfoot_length
!is.na(sex)) # remove missing sex

glimpse(surveys_complete)

Rows: 11,328
Columns: 11
$ record_id <dbl> 23215, 23217, 23220, 23222, 23223, 23224, 23225, 23226~
$ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ day <dbl> 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27~
$ year <dbl> 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, ~
$ plot_id <dbl> 21, 17, 2, 1, 2, 17, 2, 1, 21, 18, 17, 22, 12, 2, 17, ~
$ species_id <chr> "PF", "DM", "DM", "DM", "DO", "DM", "DM", "PB", "PP", ~
$ sex <chr> "F", "M", "F", "M", "M", "F", "M", "F", "F", "F", "M",~
$ hindfoot_length <dbl> 16, 36, 36, 34, 37, 39, 40, 27, 21, 16, 36, 36, 38, 35~
$ weight <dbl> 7, 25, 47, 27, 66, 49, 54, 38, 16, 9, 51, 43, 44, 45, ~
$ date <date> 1996-01-27, 1996-01-27, 1996-01-27, 1996-01-27, 1996-~
$ day_of_week <fct> Saturday, Saturday, Saturday, Saturday, Saturday, Satu~

If we were interested in plotting how species abundances have changed through time, we might also want to remove
observations for rare species (i.e., that have been observed less than 50 times). We will do this in two steps: first we
are going to create a dataset that counts how often each species has been observed, and filter out the rare species;
then, we will extract only the observations for these more common species:

Extract the most common species_id
species_counts <- surveys_complete %>%

count(species_id) %>%
filter(n >= 50)

Only keep the most common species
surveys_complete_subset <- surveys_complete %>%

filter(species_id %in% species_counts$species_id)
using the relational operator %in%

4.8. EXPORTING DATA 127

glimpse(surveys_complete_subset)

Rows: 11,266
Columns: 11
$ record_id <dbl> 23215, 23217, 23220, 23222, 23223, 23224, 23225, 23226~
$ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
$ day <dbl> 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27~
$ year <dbl> 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, 1996, ~
$ plot_id <dbl> 21, 17, 2, 1, 2, 17, 2, 1, 21, 18, 17, 22, 12, 2, 17, ~
$ species_id <chr> "PF", "DM", "DM", "DM", "DO", "DM", "DM", "PB", "PP", ~
$ sex <chr> "F", "M", "F", "M", "M", "F", "M", "F", "F", "F", "M",~
$ hindfoot_length <dbl> 16, 36, 36, 34, 37, 39, 40, 27, 21, 16, 36, 36, 38, 35~
$ weight <dbl> 7, 25, 47, 27, 66, 49, 54, 38, 16, 9, 51, 43, 44, 45, ~
$ date <date> 1996-01-27, 1996-01-27, 1996-01-27, 1996-01-27, 1996-~
$ day_of_week <fct> Saturday, Saturday, Saturday, Saturday, Saturday, Satu~

Wecan check thatsurveys_complete_subsethas 11266 rows and11 columnsby typingdim(surveys_complete_subset)
in the previous sandbox.

Now that our dataset is ready, we can save it as a CSV file in our data folder.

write_csv(surveys_complete_subset, file = "data/surveys_complete_subset.csv")

4.8.0.1 Challenge 11 Bonus

If you attended the Data Visualization workshop, make a plot of average hindfoot_lengths and weights
with colors for the points based on the plot_type.

128 SESSION 4. DATA WRANGLING IN R

Appendix

4.9 Terminology Used in Workshop

• Command: A command is what R executes. In an R script file (script.R), commands are automatically implied,
as this type of file does not accept text, only in comments. In an Rmd (Markdown) file (report.Rmd), commands
are delineated between three ticks on the top (```{r}) and three ticks (```) on the bottom.

```{r}
# Your code goes here
```

• Comment: Helpful text added into a script environment. Comments can be used to describe functions, pro‐
cesses, a train of thought, so that when you return to your code, tomorrow or next year, you are able to under‐
stand the purpose of each line of code! Comments are preceded by at least on # within a code chunk.

• Object: A variable created in R, to be used elsewhere in the code. Objects can be a variety of things, such as
scalars (x <- 3), vectors (x <- c(1, 2, 3, 4, 5)), matrices, and dataframes, to name a few.

• Assignment Arrow: The assignment arrow <- is used to assign values on the right to the objects on the left (x
<- 1). For historical reasons, you can also use = for assignments, but not everywhere. Because of these slight
differences, it is recommended to always use assignment arrows for assignment.

• Class: Most R objects have a class attribute, a character vector giving the names of the classes from which the
object inherits. Examples of classes are numeric, factor, integer, character, dataframe, matrix, list.

• Vector: A vector is a list of entries, all sharing the same class. A vector has only one dimension, so data extraction
uses only a single entry in brackets (e.g. x[3]). You can create vectors of characters (c("a", "b", "c")),
vectors of numbers (c(1, 2, 3)), to name a few.

• Matrix: Similar to what youmay have seen in a mathematics class, a matrix is an object with rows and columns,
where every entry in the matrix must be a number.

• List: A generic vector, which contains other objects. A list can contain a variety of different classes of objects,
e.g., characters, vectors, data.frames, matrices, or outputs from a model! A data.frame is a special type of list
where the components are vectors and they all have the same length.

• Dataframe: A dataframe is a collection of variables. Dataframes share many of the properties of matrices,
where you are able to extract elements using bracket ([]) notation, and lists, where you are able to extract
columns using $. Dataframes are used as the fundamental data structure by most of R’s statistical modeling

129

130 SESSION 4. DATA WRANGLING IN R

software. Note that tibbles have been more recently created as part of the tidyverse and provide a similar but
slightly different object where you can store your data.

• Argument: Input(s) into a function, so that an output is created. Most functions take named arguments (e.g.,
data = BlackfootFish) and the order of the arguments is assumed to follow the order found in the func‐
tion’s help file. When using a named argument in a function, the name comes first, followed by an = sign, then
the input.

• Logical Value: TRUE and FALSE value(s) that can be used to turn off/on options in functions and plots, and also
to manipulate data.

4.10 Workshop Materials & Recordings Available:

• email Sara Mannheimer (sara.mannheimer@montana.edu)

• through the MSU Library Data Science website (http://www.montana.edu/datascience/)

4.11 How to Learn More About R and RStudio

This material is intended to provide you with an introduction to using R for scientific analyses of data. The best way
for you to continue to learn more about R is to use it in your research! This may sound daunting, but writing R scripts
is the best way to become familiar with the syntax. This will help you progress through more advanced operations,
such as cleaning your data, using statistical methods, or creating graphics.

The best place to start is playing aroundwith the code from today’s workshop. Change parts of the code and see what
happens! Better yet, use the code from the workshop to investigate your own data!

4.11.1 Clean Code

Yes, writing code may be completely new to you, but there is a difference between code that looks nice and code
that does not. Generally, object names should be nouns and function names should be verbs. It is also important
that your code looks presentable, so that a friend/college/professor can read it and understand what you are doing.
For these reasons, there are style guides for writing code in R. The two main style guides are Google’s https://google.
github.io/styleguide/Rguide.xml and the slightly more comprehensive Tidyverse style guide https://style.tidyverse.
org/. Installing the styler package will allow you to highlight code and format it in a more legible way. Visit the
tidyverse page https://style.tidyverse.org/ for more information.

4.11.2 Projects in RStudio

R projects provide a way to organize all the code and data in one place and many consider these the best way to work
in R. We chose to avoid this step and just use a single .Rmd file to expedite your first experience using R. A motivation
for using projects is that it is important to organize your data and script files into the same or related locations and
have different locations for different iterations of projects. If you don’t do this:

• it is really hard to tell which version of your data is original and what versions are modified

mailto:sara.mannheimer@montana.edu
http://www.montana.edu/datascience/
https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml
https://style.tidyverse.org/
https://style.tidyverse.org/
https://style.tidyverse.org/

4.11. HOW TO LEARN MORE ABOUT R AND RSTUDIO 131

• things get really messy because all types of files are mixed together

• it’s probably hard for you to find things and relate the correct files to their respective output

Ultimately, good project organization will make your life easier! It helps ensure the integrity of your data, makes it
simpler to share your code or get help with your code, allows for you know exactly what code you used on a paper,
and it’s easier to pick a project back up.

It is good code writing and file storage practice to keep a set of all related data, analysis, plots, documents, etc. in
the same folder. RStudio makes this process easy with using their projects. In an RStudio project, all of the project’s
pieces are in the same folder. This allows for a clean workflow and a simple working directory for R. When you are
executing code for a document/script Rwill search for things (such as data) in the same folder as the document/script,
which is called a relative path.

Whenever you start working on a new project in RStudio, go through the following steps:

1. Click on the “File” menu button, then select “New Project”

2. Click “New Directory”

3. Click “New Project”

4. Create a name for your project (make it explanatory!)

5. Select where the project should live

6. Click the “Create Project” button

7. Open the project!

After this process R will be searching for objects (such as data) in the same folder as the project. This allows for us to
keep all of our files in a self‐contained system.

After saving your previous work today, you can try to create a project in a new folder on your computer. After you
create the project, you can create a new .Rmd file and copy and paste the text from this document into this file. And
move a copy of the BlackfootFish.csv into the project folder you created. Whenever you open this project it will take
you directly to the work you have done in that project folder. It may be useful to close the project before exiting
RStudio to avoid confusion in later sessions.

	About
	Data Science Workshop, August 8, 9am - 5pm

	Introduction to R
	Getting Started
	Working in R
	Creating Objects
	Working with Objects
	Working with Different Data Types
	Lists
	Importing Data
	Structure of Data
	Dataframes
	Extracting Data
	Changing Data Type
	Packages
	Finding Help
	Functions
	Cleaning Data
	Data Visualization
	Knitting/compiling
	Exiting RStudio
	Terminology Used in Workshop
	Workshop Materials & Recordings Available:
	How to Learn More About R and RStudio

	Data Visualization in R
	Learning Objectives
	Data Viz Introduction
	Plotting with ggplot2
	Plotting Single Variables
	Time-series Data
	ggplot2 Themes
	Customization
	Arranging Plots
	Exporting Plots

	Coding with Generative AI
	Data Wrangling in R
	Learning Objectives
	Data Wrangling using dplyr & tidyr Intro
	Select, Filter, and Mutate
	Character Wrangling
	Split-Apply-Combine Data Analysis
	Relational Data with dplyr
	Reshaping Data
	Exporting Data

	Appendix
	Terminology Used in Workshop
	Workshop Materials & Recordings Available:
	How to Learn More About R and RStudio

